Journal of Geodesy

, Volume 85, Issue 12, pp 887–907 | Cite as

The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques

  • Manuel Hernández-Pajares
  • J. Miguel Juan
  • Jaume Sanz
  • Àngela Aragón-Àngel
  • Alberto García-Rigo
  • Dagoberto Salazar
  • Miquel Escudero
Original Article

Abstract

The main goal of this paper is to provide a summary of our current knowledge of the ionosphere as it relates to space geodetic techniques, especially the most informative technology, global navigation satellite systems (GNSS), specifically the fully deployed and operational global positioning system (GPS). As such, the main relevant modeling points are discussed, and the corresponding results of ionospheric monitoring are related, which were mostly computed using GPS data and based on the direct experience of the authors. We address various phenomena such as horizontal and vertical ionospheric morphology in quiet conditions, traveling ionospheric disturbances, solar flares, ionospheric storms and scintillation. Finally, we also tackle the question of how improved knowledge of ionospheric conditions, especially in terms of an accurate understanding of the distribution of free electrons, can improve space geodetic techniques at different levels, such as higher-order ionospheric effects, precise GNSS navigation, single-antenna GNSS orientation and real-time GNSS meteorology.

Keywords

Ionospheric effects Ionospheric modeling Space Geodesy GNSS GPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afraimovich EL, Altynsev AT, Grechnev VV, Leonovich LA (2002) The response of the ionosphere to faint and bright solar flares as deduced from global GPS network data. Ann Geophys 45(1): 31–40Google Scholar
  2. Alizadeh M, Schuh H, Schmidt M (2010) Multi-dimensional modeling of electron density using spherical harmonics and chapman function, held in Vienna. In: Geophysical Research Abstracts, vol 12, EGU2010-4103-1, EGU General Assembly, May 2010Google Scholar
  3. Angling MJ, Cannon PS (2004) Assimilation of radio occultation measurements into background ionospheric models. Radio Sci Vol 39. RS1S08, doi:10.1029/2002RS002819
  4. Aragón-Àngel A, Hernández-Pajares M, Juan JM, Sanz J (2010) Improving the Abel transform inversion using bending angles from FORMOSAT-3 /COSMIC. GPS Solut 14:23–33. doi:10.1007/s10291-009-0147-y Google Scholar
  5. Arikan F, Arikan O, Erol CB (2007) Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model. Adv Space Res 39(5): 867–874CrossRefGoogle Scholar
  6. Azpilicueta F, Brunini C, Radichella SM (2006) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38: 2324–2331CrossRefGoogle Scholar
  7. Azpilicueta F, Brunini C (2011) A new concept regarding the cause of ionosphere semiannual and annual anomalies. J Geophys Res Space Phys 116: A01307. doi:10.1029/2010JA015977 CrossRefGoogle Scholar
  8. Basu S, Groves KM, Quinn JM, Doherty P (1999) A comparison of TEC fluctuations and scintillations at Ascension Island. J Atm Solar Terr Phys 61: 1219–1226CrossRefGoogle Scholar
  9. Beniguel Y, Adam J-P, Jakowski N, Noack T, Wilken V, Valette J-J, Cueto M, Bourdillon A, Lassudrie-Duchesne P, Arbesser-Rastburg B (2009) Analysis of scintillation recorded during the PRIS measurement campaign. Radio Sci 44: RS0A30. doi:10.1029/2008RS004090 CrossRefGoogle Scholar
  10. Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2): 261–275CrossRefGoogle Scholar
  11. Brunini C, Van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res 108(A2): 1056. doi:10.1029/2002JA009346 CrossRefGoogle Scholar
  12. Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46: 2006RG000212, RG1003Google Scholar
  13. Caissy M, Weber G, Agrotis L, Wübbena G, Hernández-Pajares M (2011) The IGS real-time pilot project—the development of real-time IGS correction products for precise point positioning. In: Geophysics Research Abstracts, vol 13, EGU2011-7472, EGU General Assembly, May 2011Google Scholar
  14. Chen X, Landau H, Vollath U (2003) New tools for network RTK intergrity monitoring. In: Paper presented at ION GPS/2003. Inst. of Navig., Portland, Oregon, USAGoogle Scholar
  15. Choi K, Bilich K, Larson M, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31: L22608. doi:10.1029/2004GL021621 CrossRefGoogle Scholar
  16. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration error son experimental slant total electron content (TEC) determined with GPS. J Geod 81: 111–120CrossRefGoogle Scholar
  17. Coster AJ, Colerico MJ, Foster JC, Rideout W, Rich F (2007) Longitude sector comparisons of storm enhanced density. Geophys Res Lett 34: L18105CrossRefGoogle Scholar
  18. Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd, London. ISBN 0-86341-186-XGoogle Scholar
  19. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  20. Du Q., Faber V., Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4): 637–676CrossRefGoogle Scholar
  21. Durmaz M, Onur Karslioglu M, Nohutcu M (2010) Regional VTEC modeling with multivariate adaptive regression splines. Adv Space Res 46(2): 180–189CrossRefGoogle Scholar
  22. Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5: S12002CrossRefGoogle Scholar
  23. Feltens J, Angling M, Jakowski N, Mernandez-Pajares M, Zandbergen R (2010) GNSS contribution to next generation global ionospheric monitoring. Beacon Satellite Symposium 2010, Barcelona, 8 June 2010Google Scholar
  24. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311CrossRefGoogle Scholar
  25. García-Fernández M, Hernández-Pajares M, Juan JM, Sanz J, Orús R, Coisson P, Nava B, Radicella SM (2003a) Combining ionosonde with ground GPS data for electron density estimation. J Atm Sol Terr Phys 65: 683–691CrossRefGoogle Scholar
  26. García-Fernández M, Hernández-Pajares M, Juan JM, Sanz J (2003b) Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information. J Geophys Res Space Phys 108(A9): 1338. doi:10.1029/2003JA009952 CrossRefGoogle Scholar
  27. García-Rigo A, Hernández-Pajares M, Juan JM et al (2007) Solar flare detection system based on global positioning system data: first results. Adv Space Res IRI05-35 39:889–895CrossRefGoogle Scholar
  28. García-Rigo A, Hernández-Pajares M, Juan JM, Sanz J (2008) Real time ionospheric TEC monitoring method applied to detect solar flares (Poster). European General Assembly (EGU), Vienna, AustriaGoogle Scholar
  29. García-Rigo A, Hernández-Pajares M, Monte E, Juan JM, Sanz J, Krankowski A, Wielgosz P (2009) Assessment of UPC model for ionosphere VTEC prediction (Poster). Geodesy for Planet Earth (IAG), Buenos Aires, ArgentinaGoogle Scholar
  30. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7): 389–399. doi:10.1007/s00190-007-0187-4 CrossRefGoogle Scholar
  31. Hajj GA, Ibanez-Meir R, Kursiniski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imag Syst Technol 5: 174–184CrossRefGoogle Scholar
  32. Hajj GA, Wilson BD, Wang C, Pi X, Rosen LG (2004) Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Sci 39: RS1S05CrossRefGoogle Scholar
  33. Hernández-Pajares M (2004) IGS ionosphere WG Status report: performance of IGS ionosphere TEC maps, Position Paper. IGS Workshop, BernGoogle Scholar
  34. Hernández-Pajares M, Juan JM, Sanz J (1997) High resolution TEC monitoring method using permanent ground GPS receivers. Geophys Res Lett 24(13): 1643–1646CrossRefGoogle Scholar
  35. Hernández-Pajares M, Juan JM, Sanz J (1997) Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci 32(3): 1081–1089CrossRefGoogle Scholar
  36. Hernández-Pajares M, Juan JM, Sanz J, Solé JG (1998) Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res 103(A9): 20789– 20796CrossRefGoogle Scholar
  37. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atm Sol Terr Phys 61: 1237–1247CrossRefGoogle Scholar
  38. Hernández-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophys Res Lett 27(16): 2473–2476CrossRefGoogle Scholar
  39. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2000) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13): 2009–2012CrossRefGoogle Scholar
  40. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL, van der Marel H (2001) A new strategy for real-time integrated water vapor determination in WADGPS networks. Geophys Res Lett 28(17): 3267–3270CrossRefGoogle Scholar
  41. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2002) Improving the real-time ionospheric determination from GPS sites at very long distances over the equator. J Geophys Res 107: A10CrossRefGoogle Scholar
  42. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2003) Feasibility of wide-area subdecimeter navigation with GALILEO and Modernized GPS. IEEE Trans Geosci Remote Sens 41(9): 2128– 2131CrossRefGoogle Scholar
  43. Hernández-Pajares M, Juan JM, Sanz J, García-Rodríguez A, Colombo OL (2004) Wide area real time kinematics with Galileo and GPS signals. ION-GNSS meeting, Portland, OregonGoogle Scholar
  44. Hernández-Pajares M, Juan JM, Sanz J, García-Fernández M (2005a) Towards a more realistic ionospheric mapping function. XXVIII URSI General Assembly, DelhiGoogle Scholar
  45. Hernández-Pajares M, Juan JM, Sanz J, Farnworth R, Soley S (2005b) EGNOS test bed ionospheric corrections under the October and November 2003 Storms. IEEE Trans Geosci Remote Sens 43(10):2283–2293CrossRefGoogle Scholar
  46. Hernández-Pajares M, Juan JM, Sanz J (2006) Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis. J Geophys Res 111: A07S11CrossRefGoogle Scholar
  47. Hernández-Pajares M, Juan JM, Sanz J (2006) Real time MSTIDs modelling and application to improve the precise GPS and GALILEO navigation. ION GNSS meeting, Forth Worth, TX, USAGoogle Scholar
  48. Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112: B08417CrossRefGoogle Scholar
  49. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. Special IGS Issue J Geod 83: 263–275Google Scholar
  50. Hernández-Pajares M, Juan JM, Sanz J, Aragón-Àngel A, Ramos-Bosch P, Samson J, Tossaint M, Albertazzi M, Odijk D, Teunissen PJG, de Bakker P, Verhagen S, van der Marel H (2010a) Wide-Area RTK High Precision Positioning on a Continental Scale. ION GNSS meeting, Inside GNSSGoogle Scholar
  51. Hernández-Pajares M et al (2010b) Section 9.4 Ionospheric model for radio techniques of Chapter 9 Models for atmospheric propagation delays of IERS Conventions 2010. In: Petit G., Luzum B. (eds) IERS Technical Note No. 36. Verlag des Bundes amts fur Kartographie und Geodasie, Frankfurt am MainGoogle Scholar
  52. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS—Global navigation satellite systems: GPS, GLONASS, Galileo & more. Springer, New YorkGoogle Scholar
  53. Hoque MM, Jakowski N (2008) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12(2): 87–97CrossRefGoogle Scholar
  54. Howe BM, Runciman K, Secan JA (1998) Tomography of the ionosphere: four-dimensional simulations. Radio Sci 33: 109–128CrossRefGoogle Scholar
  55. Jakowski N, Porsch F, Mayer G (1994) Ionosphere-induced-Ray-Path bending effects in precision satellite positioning systems. SPN 1/94:6–13Google Scholar
  56. Jakowski N, Wehrenpfennig A, Heise S, Reigber CH, Lühr H, Grunwaldt L, Meehan T (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10). doi:10.1029/2001GL014364
  57. Jakowski N, Wehrenpfennig A, Heise1 S, Reigber CH, Lühr H (2003) Status of ionospheric radio occultation CHAMP data analysis and validation of higher level data products, First CHAMP science mission results for gravity. In: Reigber Ch, Lühr H, Schwintzer P (eds) Magnetic and Atmospheric Studies. Springer, Berlin, pp 462–472 ISBN 3-540-00206-5Google Scholar
  58. Juan JM, Rius A, Hernández-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4): 393–396CrossRefGoogle Scholar
  59. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16): 1829. doi:10.1029/2003GL017639 CrossRefGoogle Scholar
  60. Kelley MC (2009) The earth’s ionosphere: plasma physics and electrodynamics. Int Geophys Ser 96. ISBN 978-0-12-088425-4, ElsevierGoogle Scholar
  61. Khattatov B, Murphy M, Gnedin M, Sheffel J, Adams J, Cruickshank B, Yudin V, Fuller-rowell T, Retterer J (2006) Ionospheric nowcasting via assimilation of GPS measurements of ionospheric electron content in a global physics-based time-dependent model. Q J Royal Meteorol Soc 131(613): 3543–3559CrossRefGoogle Scholar
  62. King MA, Altamimi Z, Boehm J, Bos M, Dach R, Elosegui P, Fund F, Hernández-Pajares M, Lavallee D, Mendes Cerveira PJ, Penna N, Riva REM, Steigenberger P, van Dam T, Vittuari L, Williams S, Willis P (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31: 465–507. doi:10.1007/s10712-010-9100-4 CrossRefGoogle Scholar
  63. Kliore AJ, Levy GS, Cain DL, Fjeldbo G, Rasool I (1967) Atmosphere and ionosphere of Venus from the Mariner VS-band radio occultation Measurement. Science 158(3809): 1683–1688CrossRefGoogle Scholar
  64. Komjathy A, Langley RB (1996) The effect of shell height on high precision ionospheric modelling using GPS. International GPS Service for Geodynamics (IGS) Workshop in Silver Spring. MD, 19–21 Mar 1996. In: Proceedings of the 1996 IGS Workshop, pp 193– 203Google Scholar
  65. Li G, Ning B, Yuan H (2007) Analysis of ionospheric scintillation spectra and TEC in the Chinese low latitude region. Earth Planets Space 59: 279–285Google Scholar
  66. Liu L, He M, Wan W, Zhang ML (2008) Topside ionospheric scale heights retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements. J Geophys Res 113: A10304. doi:10.1029/2008JA013490 CrossRefGoogle Scholar
  67. Liu JY, Lin CH, Tsai HF, Liou YA (2004) Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation. J Geophys Res 109: A01307CrossRefGoogle Scholar
  68. Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3): 565–582. doi:10.1029/97RS02707 CrossRefGoogle Scholar
  69. Mendillo M, Klobuchar JA, Fritz RB (1974) Behavior of the ionospheric F region during the great solar flare of August 7, 1972. J Geophys Res 79: 665–672CrossRefGoogle Scholar
  70. Misra P, Enge P (2004) Global positioning system: signals, measurements and performance, 2nd edn. Ganga-Jamuna Press Lincoln, USAGoogle Scholar
  71. Orùs R, Hernández-Pajares M, Juan JM, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atm Sol Terr Phys 67(16): 1598–1609CrossRefGoogle Scholar
  72. Petrie EJ, Hernández-Pajares M, Spalla P, Moore P, King MA (2011) A review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32: 197–253. doi:10.1007/s10712-010-9105-z CrossRefGoogle Scholar
  73. Sanz J, Juan JM, Hernández-Pajares M (2011) GNSS data processing. In: ESA Communication Production Office (ed) Fundamentals and Algorithms, vol I (in press)Google Scholar
  74. Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29: 577–586CrossRefGoogle Scholar
  75. Schaer S, Gurtner W, Feltens J (1998) IONEX: The IONosphere Map EXchange Format Version 1. February 25, 1998. In: Proceedings of the 1998 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, February 9–11, pp 233–247Google Scholar
  76. Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Ph. D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 25 March 1999Google Scholar
  77. Schmidt M, Bilitza D, Shum CK, Zeilhofer C (2008) Regional 4-D modeling of the ionospheric electron density. Adv Space Res 42(4): 782–790CrossRefGoogle Scholar
  78. Seeber G (1993) Satellite geodesy: foundations, methods, and applications. Walter de Gruyter & Co., BerlinGoogle Scholar
  79. Shiokawa K, Otsuka Y, Ogawa T, Balan N, Igarashi K, Ridley AJ, Knipp DJ, Saito A, Yumoto K (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res 107(A6): 1088. doi:10.1029/2001JA000245 CrossRefGoogle Scholar
  80. Smith DA, Araujo-Pradere EA, Minter C, Fuller-Rowell T (2008) A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere. Radio Sci 43: RS6008CrossRefGoogle Scholar
  81. Tsai LC, Tsai WH (2004) Improvement of GPS/MET ionospheric profiling and validation using the Chung-Li ionosonde measurements and the IRI mode. TAO 15(4): 589–607Google Scholar
  82. Tsurutani BT, Verkhoglyadova OP, Mannucci AJ, Lakhina GS, Li G, Zank GP (2009) A brief review of solar flare effects on the ionosphere. Radio Sci 44: RS0A17. doi:10.1029/2008RS004029 CrossRefGoogle Scholar
  83. Tsyganenko NA (2003) A set of FORTRAN subroutines for computa- tions of the geomagnetic field in the Earth’s magnetosphere (Geopack). Univ. Space Res. Assoc., Columbia Md., USAGoogle Scholar
  84. Van Dierendonck AJ, Arbesser-Rastburg B (2004) Measuring ionospheric scintillation in the equatorial region over Africa, including measurements from SBAS geostationary satellite signals. In: Proceedings of ION GNSS 17th technical meeting of the satellite division, Long Beach, CA, vol 316Google Scholar
  85. Walter T et al (2010) Effect of ionospheric scintillations on GNSS—a white paper. SBAS Ionospheric Working Group, November 2010Google Scholar
  86. Wanninger L (2004) Ionospheric disturbance indices for RTK and network RTK positioning. In: Paper presented at ION GPS/2004, Inst. of Navig., Long Beach, CaliforniaGoogle Scholar
  87. Ware RH, Exner ML, Herman BM, Kuo B, Meehan TK, Rocken C (1995) GPS/MET preliminary report. The University Corporation for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  88. Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo YH (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28: 217–222CrossRefGoogle Scholar
  89. Yue X, Schreiner WS, Lei J, Rocken C, Kuo YH, Wan W (2010) Climatology of ionospheric upper transition height derived from COSMIC satellites during the solar minimum of 2008. J Atm Sol Terr Phys 72: 1270–1274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Manuel Hernández-Pajares
    • 1
  • J. Miguel Juan
    • 1
  • Jaume Sanz
    • 1
  • Àngela Aragón-Àngel
    • 1
  • Alberto García-Rigo
    • 1
  • Dagoberto Salazar
    • 1
  • Miquel Escudero
    • 1
  1. 1.Research Group of Astronomy and Geomatics (gAGE)Technical University of Catalonia (UPC)CataloniaSpain

Personalised recommendations