Skip to main content
Log in

Determination of the main Lunar waves generated by the third degree tidal potential and validity of the corresponding body tides models

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Seventeen long series of tidal gravity observations with superconducting gravimeters (SGs) belonging to the GGP network allowed to determine the main tidal waves generated by the tidal potential of third degree in the Diurnal (M1), Semi-Diurnal (3MK2, 3MO2) and Ter-Diurnal (M3) bands with a precision of 0.1%, although the amplitudes of these waves are below 10 nm s−2 (1 μgal). Special analysis techniques have been used to separate M1, 3MK2 and 3MO2 from the neighbouring waves generated by the second degree potential. The 11 European stations form a geographically homogeneous subgroup and it is thus possible to derive some conclusions concerning the ocean tides loading and the body tides models. The results for M1, 3MK2 and 3MO2 are not in contradiction with the recent models and the results for M3 are even in agreement with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker TF, Bos MS (2003) Validating Earth and ocean models using tidal gravity measurements. Geophys J Int 152: 468–485

    Article  Google Scholar 

  • Boy J-P, Llubes M, Ray RD, Hinderer J, Florsch N, Rosat S, Lyard F, Letellier T (2004) Non-linear oceanic tides observed by superconducting gravimeters in Europe. J Geodyn 38(3–5): 391–405

    Article  Google Scholar 

  • Cartwright DE (1975) A subharmonic lunar tide in the seas off western Europe. Nature 257: 277–280

    Article  Google Scholar 

  • Cartwright DE (1976) Anomalous M1 tide at Lagos. Nature 263: 217–218

    Article  Google Scholar 

  • Crossley D, Hinderer J, Casula G, Francis O, Hsu HT, Imanishi Y, Jentzsch G, Kääriaïnen J, Merriam J, Meurers B, Neumeyer J, Richter B, Shibuya K, Sato T, Van Dam T (1999) Network of superconducting gravimeters benefits a number of disciplines. EOS 80, 11:121/125-126

    Google Scholar 

  • Dehant V (1987) Tidal parameters for an inelastic Earth. Phys Earth Planet Inter 49: 97–116

    Article  Google Scholar 

  • Dehant V, Defraigne P, Wahr J (1999) Tides for a convective Earth. J Geophys Res 104(B1): 1035–1058

    Article  Google Scholar 

  • Dittfeld HJ (1991) Analysis of third degree waves with diurnal and semidiurnal frequencies. Bull Inf Marées Terrestres 111:8053–8061. http://www.bim-icet.org

  • Ducarme B, Melchior P (1998) Eight lunar nodal waves and third degree waves derived from the 14 year series of observations with the superconducting gravimeter GWR/T3 in Brussels. In: Proceeding 13th International Symposium on Earth Tides, Brussels July 22–25, 1997. Observatoire Royal de Belgique, Série Géophysique, Brussels, pp 347–356

  • Ducarme B, Somerhausen A (1997) Tidal gravity recording at Brussels with a SCINTREX CG3-M gravimeter. Bull Inf Marées Terrestres 126:9611–9634. http://www.bim-icet.org

  • Ducarme B, Sun HP (2001) Tidal gravity results from GGP network in connection with tidal loading and Earth response. In: Proceeding 14th International Symposium on Earth Tides. J Geod Soc Jpn 47(1): 308–315

    Google Scholar 

  • Ducarme B, Sun HP, Xu JQ (2002) New investigation of tidal gravity results from GGP network. Bull Inf Marées Terrestres 136:10761–10776. http://www.bim-icet.org

    Google Scholar 

  • Ducarme B, Vandercoilden L, Venedikov AP (2006) Estimation of the precision by the tidal analysis programs ETERNA and VAV. Bull Inf Marées Terrestres 141:11189–11200. http://www.bim-icet.org

    Google Scholar 

  • Ducarme B, Sun HP, Xu JQ (2007a) Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J Geodesy 81: 179–187. doi:10.1007/s00190-006-0098-9

    Article  Google Scholar 

  • Ducarme B, Zhou JC, Sun HP (2007b) Evaluation of M4 ocean tide loading inside the GGP network. Bull Inf Marées Terrestres 143:11473–11488. http://www.eas.slu.edu/GGP

    Google Scholar 

  • Ducarme B, Rosat S, Vandercoilden L, Xu JQ, Sun HP (2009) European tidal gravity observations: comparison with Earth tides models and estimation of the free core nutation (FCN) parameters. In: Sideris MG (ed) Proceedings of the 2007 IAG General Assembly, Perugia, Italy, July 2–13, 2007. Observing our changing Earth. Springer, International Association of Geodesy Symposia 133:523–532. doi:10.1007/s978-3-540-85426-5

  • Farrell WE (1972) Deformation of the Earth by surface load. Rev Geoph 10: 761–779

    Article  Google Scholar 

  • Francis O (1997) Calibration of the C021 superconducting gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements. In: Segawa et al (eds) International association of Geodesy Symp., Gravity, Geoid and Marine Geodesy 117:212–219

  • Hartmann T, Wenzel HG (1995) Catalogue HW95 of the tide generating potential. Bull Inf Marées Terrestres 123:9278–9301. http://www.bim-icet.org

    Google Scholar 

  • Jeffreys H (1957) Theoretical values of the bodily tide numbers. Bull Inf Marées Terrestres 3:29. http://www.bim-icet.org

  • Kangieser E, Torge W (1981) Calibration of LaCoste-Romberg gravity meters. Model G and D. Bull Inf Bur Grav Int 49: 50–63

    Google Scholar 

  • Mathews PM (2001) Love numbers and gravimetric factor for diurnal tides. In: Proceeding 14th International Symposium Earth Tides. J Geod Soc Jpn 47(1): 231–236

    Google Scholar 

  • Melchior P (1983) The tides of the Planet Earth. Pergamon Press, Oxford

    Google Scholar 

  • Melchior P, Venedikov AP (1968) Derivation of the wave M3 (8h.279) from the periodic tidal deformations of the Earth. Phys Earth Planet Inter 1(6): 363–372

    Article  Google Scholar 

  • Melchior P, Ducarme B, Francis O (1996) The response of the Earth to tidal body forces described by second- and third-degree spherical harmonics as derived from a 12 year series of measurements with the superconducting gravimeter GWR/T3 in Brussels. Phys Earth Planet Inter 93: 223–238

    Article  Google Scholar 

  • Molodenskii MS (1953) Elastic tides, free nutation and some problems of the Earth’s structure. Acad Sc URSS Travaux Inst Geoph 19(146): 3–52

    Google Scholar 

  • Molodenskii MS, Kramer MV (1961) Les nombres de Love pour les marées terrestres statiques des 2ème et 3ème ordres. Acad Sc URSS, Inst Phys. De la Terre O.Y. Schmidt (Bull. Inf. Marées Terrestres, 47, 1967, 1935–1950. http://www.bim-icet.org)

  • Platzman GW (1975) Normal modes of Atlantic and Indian Oceans. J Phys Oceanogr 5((2): 201–221

    Article  Google Scholar 

  • Platzman GW (1984) Normal modes of the world ocean. Part IV: synthesis of diurnal and semidiurnal tides. J Phys Oceanogr 14: 1532–1550

    Article  Google Scholar 

  • Ray RD (2001) Resonant third-degree diurnal tides in the seas off western Europe. J Phys Oceanogr 31: 3581–3586

    Article  Google Scholar 

  • Saito M (1974) Some problems of static deformation of the Earth. J Phys Earth 22: 123–140

    Article  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D. Reidel Publishing Company, Tokyo

    Google Scholar 

  • Takeuchi H (1950) On the earth tide of the compressible Earth of variable density and elasticity. Trans Am Geophys Union 31: 651–689

    Google Scholar 

  • Tamura Y (1987) A harmonic development of the tide-generating potential. Bull Inf Marées Terrestres 99:6813–6855. http://www.bim-icet.org

  • Van Camp M, Vauterin P, Wenzel HG, Schott P, Francis O (2000) Accurate transfer function determination for superconducting gravimeters. Geophys Res Lett 27: 37–40

    Article  Google Scholar 

  • Venedikov AP (1961) Application à l’analyse harmonique des observations des marées terrestres de la méthode des moindres carrés. Comptes Rendus Académie Bulgare des Sciences, 14

  • Venedikov AP, Ducarme B (2000) Determination of the Earth tide constituents generated by the tidal potentials of degree 3 and 4 for large series of observations made by superconducting gravimeters. Bulg Geophys J 26(1–4): 61–74

    Google Scholar 

  • Venedikov AP, Vieira R, de Toro C (1997) On the determination of the D and SD Earth tides generated by the tidal potential of the third order. Bull Inf Marées Terrestres 126:9635–9637. http://www.bim-icet.org

  • Wahr JM (1981) Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys J R Astron Soc 64: 677–703

    Google Scholar 

  • Wenzel HG (1996) The nanogal software: Earth tide data preprocessing package. Bull Inf Marées Terrestres 124:9425–9439. http://www.bim-icet.org

  • Wenzel HG (1997a) Tide generating potential for the Earth. Tidal phenomena. In: Wilhelm H, Zürn W, Wenzel H-G (eds) Lecture notes in Earth sciences, vol 66, pp 9–26

  • Wenzel HG (1997b) Analysis of Earth tide observations. Tidal phenomena. In: Wilhelm H, Zürn W, Wenzel H-G (eds) Lecture notes in Earth sciences, vol 66, pp 59–76

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ducarme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducarme, B. Determination of the main Lunar waves generated by the third degree tidal potential and validity of the corresponding body tides models. J Geod 86, 65–75 (2012). https://doi.org/10.1007/s00190-011-0492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0492-9

Keywords

Navigation