Skip to main content

A new global TEC model for estimating transionospheric radio wave propagation errors

Abstract

Space-based navigation and radar systems operating at single frequencies of <10 GHz require ionospheric corrections of the signal delay or range error. Because this ionospheric propagation error is proportional to the total electron content of the ionosphere along the ray path, a user friendly TEC model covering global scale and all levels of solar activity should be helpful in various applications. Since such a model is not available yet, we present an empirical model approach that allows determining global TEC very easily. Although the number of model coefficients and parameters is rather small, the model describes main ionospheric features with good quality. Presented is the empirical approach describing dependencies on local time, geographic/geomagnetic location and solar irradiance and activity. The non-linear approach needs only 12 coefficients and a few empirically fixed parameters for describing the broad spectrum of TEC variation at all levels of solar activity. The model approach is applied on high-quality global TEC data derived by the Center for Orbit Determination in Europe (CODE) at the University of Berne over more than half a solar cycle (1998–2007). The model fits to these input data with a negative bias of 0.3 TECU and a RMS deviation of 7.5 TECU. As other empirical models too, the proposed Global Neustrelitz TEC Model NTCM-GLis climatological, i.e. the model describes the average behaviour under quiet geomagnetic conditions. During severe space weather events the actual TEC data may deviate from the model values considerably by more than 100%. A preliminary comparison with independent data sets as TOPEX/Poseidon altimeter data reveals similar results for NeQuick and NTCM-GL with RMS deviations in the order of 5 and 11 TECU (1 TECU = 1016 electrons/m2) for low and high-solar activity conditions, respectively. The more extended data base of ionosphere information that accumulates in the coming years will help in further improving the set of coefficients of the model.

This is a preview of subscription content, access via your institution.

References

  • Aster RC, Borchers B, Thurber CH (2005) Nonlinear regression. In: Dmowska R, Holton J, Rossby HT (eds) Parameter estimation and inverse problems. Elsevier, USA, ISBN:0-12-065604-3

  • Batista IS, de Souza JR, Abdu MA, de Paula ER (1994) Total electron content at low latitudes and its comparison with the IRI90. Adv. Space Res. 14: 87–90

    Article  Google Scholar 

  • Bent RB, Llewllyn SK, Schmid PE (1972) Ionospheric refraction corrections in satellite tracking. Space Res 12: 1186–1194

    Google Scholar 

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36: 261–275

    Article  Google Scholar 

  • Brown LD, Daniell JE, Fox MW Jr, Klobuchar JA, Doherty P (1991) Evaluation of six ionospheric models as predictors of total electron content. Radio Sci 26: 1007–1015

    Article  Google Scholar 

  • Center for Orbit Determination in Europe (CODE) http://www.aiub.unibe.ch/content/research/gnss/code__research/igs/global_ionosphere_maps_produced_by_code/index_eng.html

  • Coisson P, Radicella SM, Leitinger R, Nava B (2006) Topside electron density in IRI and NeQuick: features and limitations. Adv Space Res 37: 937–942

    Article  Google Scholar 

  • Hochegger G, Nava B, Radicella SM, Leitinger R (2000) A family of ionospheric models for different uses, physics and chemistry of the earth. Part C: solar. Terrestrial Planet Sci 25(4): 307–310

    Google Scholar 

  • Hugentobler U, Schaer S, Springer T, Beutler G, Bock H, Dach R, Ineichen D, Mervart1 L, Rothacher M, Wild U, Wiget A, Brockmann E, Weber G, Habrich H, Boucher C (2000) CODE IGS Analysis Center Technical Report 2000

  • ICD-GPS-200 (1993) Revision C, Navstar GPS Space Segment/Navigation User Interfaces. 10 October 1993

  • Jakowski N, Paasch E (1984) Report on the observations of the total electron content of the ionosphere in Neustrelitz/GDR from 1976 to 1980. Ann Geophys 2: 501–504

    Google Scholar 

  • Jakowski N (1996) TEC monitoring by using satellite positioning systems. In: Kohl H, Ruester R, Schlegel K (eds) Modern ionospheric science. EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin, pp 371–390

    Google Scholar 

  • Jakowski N, Sardon E, Schlueter S (1998) GPS-based TEC observations in comparison with IRI95 and the European TEC model NTCM2. Adv Space Res 22: 803–806

    Article  Google Scholar 

  • Jakowski N, Stankov SM, Klaehn D (2005) Operational space weather service for GNSS precise positioning. Ann Geophys 23: 3071–3079

    Article  Google Scholar 

  • Jakowski N, Mayer C, Missling KD, Becker C, Borries C, Daedelow H, Dubey S, Noack T, Tegler M, Wilken V (2008) Space weather application center ionosphere—new capabilities for GNSS users. In: Proceedings of the fifth European space weather week, 17–21 November 2008, Brussels, Belgium

  • Klobuchar J (1987) Ionospheric time-delay algorithm for single frequency GPS users. In: IEEE transactions on aerospace and electronic systems, AES-23, pp 325–332

  • Leitinger R, Zhang ML, Radicella SM (2005) An improved bottomside for the ionospheric electron density model NeQuick. Ann Geophys 48(3): 525–534

    Google Scholar 

  • Mazella AJ Jr, Holland EA, Andreasen AM, Andreasen CC, Rao GS, Bishop J (2002) Autonomous estimation of plasmasphere content using GPS measurements. Radio Sci 37: 1092–1096

    Article  Google Scholar 

  • Nava B, Coisson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. JASTP 1856-1862

  • Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27: 35–40

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29: 577–586

    Article  Google Scholar 

  • Schaer S, Beutler G, Rothacher M (1998) Mapping and predicting the ionosphere. In: Dow JM, Kouba J, Springer T (eds) Proceedings of the 1998 IGS analysis center workshop, Darmstadt, February 9–11, 1998, pp 307–318, ESA/ESOC, Darmstadt, 1998

  • Seber GAF, Wild CJ (1989) Unconstrained optimization. In: Nonlinear regression. Wiley, New Jersey, ISBN:0-471-47135-6

  • Space Weather Application Center Ionosphere (SWACI). http://swaciweb.dlr.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jakowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jakowski, N., Hoque, M.M. & Mayer, C. A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85, 965–974 (2011). https://doi.org/10.1007/s00190-011-0455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0455-1

Keywords

  • Ionosphere
  • Total electron content
  • Empirical model
  • GNSS