Ground- and space-based GPS data ingestion into the NeQuick model


This paper presents a technique for ingesting ground- and space-based dual-frequency GPS observations into a semi-empirical global electron density model. The NeQuick-2 model is used as the basis for describing the global electron density distribution. This model is mainly driven by the F2 ionosphere layer parameters (i.e. the electron density, N m F2, and the height, h m F2 of the F2 peak), which, in the absence of directly measured values, are computed from the ITU-R database (ITU-R 1997). This database was established using observations collected from 1954 to 1958 by a network of around 150 ionospheric sounders with uneven global coverage. It allows computing monthly median values of N m F2 and h m F2 (intra-month variations are averaged), for low and high solar activity. For intermediate solar activity a linear interpolation must be performed. Ground-based GNSS observations from a global network of ~350 receivers are pre-processed in order to retrieve slant total electron content (sTEC) information, and space-based GPS observations (radio occultation data from the FORMOSAT-3/COSMIC constellation) are pre-processed to retrieve electron density (ED) information. Both, sTEC and ED are ingested into the NeQuick-2 model in order to adapt N m F2 and h m F2, and reduce simultaneously both, the observed minus computed sTEC and ED differences. The first experimental results presented in this paper suggest that the data ingestion technique is self consistent and able to reduce the observed minus computed sTEC and ED differences to ~25–30% of the values computed from the ITU-R database. Although sTEC and ED are both derived from GPS observations, independent algorithm and models are used to compute their values from ground-based GPS observations and space-based FORMOSAT-3/COSMIC radio occultations. This fact encourages us to pursue this research with the aim to improve the results presented here and assess their accuracy in a reliable way.

This is a preview of subscription content, log in to check access.


  1. Aragón-Ángel A, Hernández-Pajares M, Juan JM, Sanz J (2009) Improving the Abel transform inversion using bending angles from FORMOSAT-3/COSMIC, GPS Solut, doi:10.1007/s10291-009-0147-y

  2. Azpilicueta F, Brunini C, Radicella SM (2005) Global ionospheric maps from GPS observations using modip latitude. JASR, Elsevier, Amsterdam (36):552–561

  3. Bailey GJ, Balan N, Su YZ (1997) The Sheffield University plasmasphere ionosphere model: a review. J Atmos Sol Terr Phys 59: 1541–1552

    Article  Google Scholar 

  4. Bilitza D (2001) International Reference Ionosphere 2000. Radio Sci 36(2): 261–275

    Article  Google Scholar 

  5. Dudeney JR (1974) A Simple Empirical Method for Estimating the Height of the F2-Layer at the Argentine Islands Graham Land, Science Report No 88, British Antarctic Survey, London, UK

  6. Feess WA, Stephens SG (1987) Evaluation of GPS ionospheric time delay model. IEEE Trans Aerosp Electron Syst 23(3): 332–338

    Article  Google Scholar 

  7. Feltens J (1998) Chapman profile approach for 3-D global TEC representation. In: Dow JM, Kouba J, Springer T (eds) Proceedings of the IGS Analysis Center Workshop, Darmstadt pp 285-297

  8. Feltens J, Schaer S (1998) IGS products for the ionosphere. In: Dow JM, Kouba J, Springer T (eds) Proceedings of the IGS Analysis Center Workshop, 225-232, Darmstadt, 1998

  9. Hajj GA, Ibanez-Meier R, Kursinski ER, Romans LJ (1994) Imaging the ionosphere with global positioning system. Int J Imaging System Technology 5: 174–184

    Article  Google Scholar 

  10. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61: 1237–1247

    Article  Google Scholar 

  11. Hernández-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geop Res Lett 27(16): 2473–2476

    Article  Google Scholar 

  12. Hernández-Pajarez M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC map: a reliable source of ionospheric information since 1998. J Geod 83: 263–275

    Article  Google Scholar 

  13. Huba JD, Joyce G, Fedder JA (2000) Sami2 is another model of the ionosphere (SAMI2): a new low-latitude ionosphere model. J Geophys Res 105(A10), 23, 035-23,054

    Google Scholar 

  14. ITU-R (1997) Recommendation ITU-R P.1239, ITU-R reference ionospheric characteristics, International Telecommunications Union, Radio - Communication Sector, Geneva

  15. Jakowski N, Leitinger R, Angling M (2004) Radio occultation techniques for probing the ionosphere. Ann Geophys, Suppl. 47(2/3): 1049–1066

    Google Scholar 

  16. Jodogne JC, Nebdi H, Warnant R (2004) GPS TEC and ITEC from digisonde data compared with NEQUICK model. Adv Sapce Res 2: 269–273

    Google Scholar 

  17. Jones WB, Gallet RM (1965) The representation of diurnal and geographical of ionospheric delay by numerical methods. Telecomm J 32: 18

    Google Scholar 

  18. Kleusberg A (1986) Ionospheric propagation effects in geodetic relative GPS positioning. Manuscripta Geodaetica 11: 256–261

    Google Scholar 

  19. Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellite observations. Radio Sci 23(4): 483–492

    Article  Google Scholar 

  20. Leitinger R, Ladreiter HP, Kirchengast G (1997) Ionosphere tomography with data from satellite reception of GNSS signals and ground reception of NNSS signals. Radio Sci 32(4): 1657–1669

    Article  Google Scholar 

  21. Manucci AJ, Iijima BA, Lindqwister UJ, Pi X, Sparks L, Wilson BD (1999) GPS and ionosphere, revised submission to URSI reviews of Radio Sci, Jet Propulsion Laboratory, Pasadena, California

  22. Manucci AJ, Wilson BD, Yuan DN, Ho CM, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron-content measurements. Radio Sci 33(3): 565–582

    Article  Google Scholar 

  23. Nava B, Coïsson P, Radicella SM (2008) A New version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys, pp. 1856–1862 doi:10.1016/j.jastp.2008.01.015

  24. Orús R, Hernández-Pajares M, Juan JM, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atmos Sol Terr Phys 67(16): 1598–1609

    Article  Google Scholar 

  25. Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27(1):35–40

    Article  Google Scholar 

  26. Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29: 577–586

    Article  Google Scholar 

  27. Schaer S, Beutler G, Rothacher M, Soringer T (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In: Proceedings of the IGS Analysis Center Workshop, Silver Spring

  28. Schmidt M, Bilitza D, Shum CK, Zeilhofer C (2008) Regional 4-D modeling of the ionospheric electron density. Adv Space Res 42: 782–790

    Article  Google Scholar 

  29. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPSMET radio occultation data in the ionosphere. Radio Sci 34: 949–966

    Article  Google Scholar 

  30. Schunk RW (2002) Global Assimilation of Ionospheric Measurements (GAIM), paper presented at Ionospheric Effects Symposium, Office of Naval Research, Alexandria, VA

  31. Wang C, Hajj G, Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model, Radio Sci, 39, doi:10.1029/2002RS002854

  32. Wild U, Beutler G, Gurtner W, Rothacher M (1989) Estimating the ionosphere using one or more dual frequency GPS receivers. In: Proceedings of the Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, pp 724-736

Download references

Author information



Corresponding author

Correspondence to C. Brunini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brunini, C., Azpilicueta, F., Gende, M. et al. Ground- and space-based GPS data ingestion into the NeQuick model. J Geod 85, 931–939 (2011).

Download citation


  • Ionosphere
  • GPS
  • NeQuick-2
  • ITU-R-database
  • Data ingestion