Skip to main content
Log in

On the accurate numerical evaluation of geodetic convolution integrals

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In the numerical evaluation of geodetic convolution integrals, whether by quadrature or discrete/fast Fourier transform (D/FFT) techniques, the integration kernel is sometimes computed at the centre of the discretised grid cells. For singular kernels—a common case in physical geodesy—this approximation produces significant errors near the computation point, where the kernel changes rapidly across the cell. Rigorously, mean kernels across each whole cell are required. We present one numerical and one analytical method capable of providing estimates of mean kernels for convolution integrals. The numerical method is based on Gauss-Legendre quadrature (GLQ) as efficient integration technique. The analytical approach is based on kernel weighting factors, computed in planar approximation close to the computation point, and used to convert non-planar kernels from point to mean representation. A numerical study exemplifies the benefits of using mean kernels in Stokes’s integral. The method is validated using closed-loop tests based on the EGM2008 global gravity model, revealing that using mean kernels instead of point kernels reduces numerical integration errors by a factor of ~5 (at a grid-resolution of 10 arc min). Analytical mean kernel solutions are then derived for 14 other commonly used geodetic convolution integrals: Hotine, Eötvös, Green-Molodensky, tidal displacement, ocean tide loading, deflection-geoid, Vening-Meinesz, inverse Vening-Meinesz, inverse Stokes, inverse Hotine, terrain correction, primary indirect effect, Molodensky’s G1 term and the Poisson integral. We recommend that mean kernels be used to accurately evaluate geodetic convolution integrals, and the two methods presented here are effective and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz IA, Stegun MA (1972) Handbook of mathematical functions. Dover Publications, New York

    Google Scholar 

  • Alberts B, Klees R (2004) A comparison of methods for the inversion of airborne gravity data. J Geod 78(1): 55–65. doi:10.1007/s00190-003-0366-x

    Article  Google Scholar 

  • Asgharzadeh MF, von Frese RB, Kim HR, Leftwich TE, Kim JW (2007) Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys J Int 169(1): 1–11. doi:10.1111/j.1365-246X.2007.03214.x

    Article  Google Scholar 

  • Bláha T, Hirsch M, Keller W, Scheinert M (1996) Application of a spherical FFT approach in airborne gravimetry. J Geod 70(11): 663–672. doi:10.1007/BF00867145

    Google Scholar 

  • Bos MS, Baker TF (2005) An estimate of the errors in gravity ocean tide loading computations. J Geod 79(1-3): 50–63. doi:10.1007/s00190-005-0442-5

    Article  Google Scholar 

  • Boyarsky EA, Afanasyeva LV, Koneshov VN, Rozhkov YE (2010) On the calculation of the vertical deflection and the geoid undulation from gravity anomalies. Phys Solid Earth 46(6): 538–543

    Article  Google Scholar 

  • Claessens SJ, Hirt C, Amos MJ, Featherstone WE, Kirby JF (2011) The NZGEOID09 New Zealand quasigeoid model. Surv Rev 43(319): 2–15. doi:10.1179/003962610X12747001420780

    Article  Google Scholar 

  • Conte SD, de Boor C (1972) Elementary numerical analysis—an algorithmic approach. McGraw-Hill, Kogakusha

    Google Scholar 

  • de Min E (1994) On the numerical evaluation of Stokes’ integral. Int Geoid Serv Bull 3: 41–46

    Google Scholar 

  • de Min E (1996) De Geoide voor Nederland. Nederlandse Commissie voor Geodesie Publikatie 34 (Dutch geodetic commission publication no 34), Delft

  • El Habiby MM (2007) Wavelet representation of geodetic operators, UCGE report no 20250, University of Calgary

  • Engels H (1980) Numerical quadrature and cubature. Academic Press, London

    Google Scholar 

  • Featherstone WE, Olliver JG (1997) A method to validate gravimetric geoid computation software based on Stokes’s integral. J Geod 71(9): 571–576. doi:10.1007/s001900050125

    Article  Google Scholar 

  • Featherstone WE (2002) Tests of two forms of Stokes’s integral using a synthetic gravity field based on spherical harmonics. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy—the challenge for the third millennium. Springer, Berlin, pp 163–171

    Google Scholar 

  • Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown N, Hu G, Johnston GM (2011) The AUSGeoid2009 model of the Australian Height Datum. J Geod 85(3): 133–150. doi:10.1007/s00190-010-0422-2

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus

  • Forsberg R (1985) Gravity field terrain effect computations by FFT. Bull Géodésique 59(4): 342–360. doi:10.1007/BF02521068

    Article  Google Scholar 

  • Golub GH, Welsch JH (1969) Calculation of Gauss quadrature rules. Math Comp 23(106): 221–230, s1–s10

    Google Scholar 

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. manuscripta geodaetica 18(5): 227–241

    Google Scholar 

  • Hammer S (1939) Terrain corrections for gravimeter stations. Geophysics 4(3): 184–194. doi:10.1190/1.1440495

    Article  Google Scholar 

  • Hamming RW (1986) Numerical methods for scientists and engineers, 2nd edn. Dover Publications, New York (reprint)

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hipkin RG (1988) Bouguer anomalies and the geoid: a reassessment of Stokes’s method. Geophys J Int 92: 53–66. doi:10.1111/j.1365-246X.1988.tb01120.x

    Article  Google Scholar 

  • Holmes, SA, Pavlis NK (2008) Spherical harmonic synthesis software harmonic_synth. http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/new_egm.html

  • Hotine M (1969) Mathematical geodesy, ESSA Monograph No 2. US Department of Commerce, Washington, DC

    Google Scholar 

  • Huang J, Vaníček P, Novák P (2000) An alternative algorithm to FFT for the numerical evaluation of Stokes’s integral. Studia Geophysica et Geodaetica 44(3): 374–380. doi:10.1023/A:1022160504156

    Article  Google Scholar 

  • Hwang C (1998) Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea. J Geod 72(5): 304–312. doi:10.1007/s001900050169

    Article  Google Scholar 

  • Kearsley AHW (1986) Data requirements for determining precise relative geoid heights from gravimetry. J Geophys Res 91(B9): 9193–9201

    Article  Google Scholar 

  • Klees R (1996) Numerical calculation of weakly singular surface integrals. J Geod 70(11): 781–797

    Article  Google Scholar 

  • Lehmann R (1997) Fast space-domain evaluation of geodetic surface integrals. J Geod 71(9): 533–540

    Article  Google Scholar 

  • Lether FG, Wenston PR (1995) Minimax approximation to the zeros of P_n(x) and Gauss-Legendre quadrature. J Comp Appl Math 59(2): 245–252. doi:10.1016/0377-0427(94)00030-5

    Article  Google Scholar 

  • Makhloof AA, Ilk KH (2008) Far-zone effects for different topographic-compensation models based on a spherical harmonic expansion of the topography. J Geod 82(10): 613–635

    Article  Google Scholar 

  • Molodensky MS, Yeremeyev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. Translated from Russian, Isreali Programme for Scientific Translations, Jerusalem

  • Moritz H (1980) Advanced physical geodesy. Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Newton’s Bulletin (2009) Newton’s Bulletin Issue n° 4, April 2009. Publication of the International Association of Geodesy and International Gravity Field Service. ISSN: 1810-8555

  • Novák P, Vaníček P, Véronneau M, Holmes SA, Featherstone WE (2001) On the accuracy of modified Stokes’s integration in high-frequency gravimetric geoid determination. J Geod 74(9): 644–654. doi:10.1007/s001900000126

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geoscience Union, Vienna, Austria, 13–18 April 2008

  • Press WH, Teukolsky SA, Vetterling WT, Flannary BP (2003) Numerical recipes in Fortran 77—the art of scientific computing, 2nd edn. Fortran numerical recipes, vol 1. Cambridge University Press, Cambridge

  • Press WH, Teukolsky SA, Vetterling WT, Flannary BP (2002) Numerical recipes in C—the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sampietro D, Sona G, Venuti G (2007) Residual terrain correction on the sphere by an FFT Algorithm. In: Proceedings of the 1st International Symposium on international gravity field service, Aug 28–Sep 1, Istanbul, Turkey, Harita Dergesi Special Issue, pp 306–311

  • Schwarz K-P, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100(3): 485–514. doi:10.1111/j.1365-246X.1990.tb00701.x

    Article  Google Scholar 

  • Sideris MG, Li YC (1993) Gravity field convolution without windowing and edge effects. Bull Géodésique 67(2): 107–118. doi:10.1007/BF01371374

    Article  Google Scholar 

  • Sideris MG, She BB (1995) A new high-resolution geoid for Canada and part of the US by the 1D-FFT method. Bull Géodésique 69(2): 92–108. doi:10.1007/BF00819555

    Article  Google Scholar 

  • Sormann H (2009) Numerische Methoden in der Physik Institut für Theoretische Physik-Computational Physics, TU Graz, Austria. http://itp.tugraz.at/LV/sormann/NumPhysik/Skriptum/

  • Stark PA (1970) Introduction to numerical methods. MacMillian, New York

    Google Scholar 

  • Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, New York

    Google Scholar 

  • Strang van Hees G (1990) Stokes formula using fast Fourier techniques. manuscripta geodaetica 15(4): 235–239

    Google Scholar 

  • Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall, New York

    Google Scholar 

  • Torge W (2001) Geodesy, 3rd edn. De Gruyter, Berlin

    Book  Google Scholar 

  • Tscherning CC (2003) Proposal for the precise definition of mean values of gravity field quantities. Newton’s Bulletin, no. 1. International Geoid Service, pp 11–13

  • Tziavos IN (1996) Comparisons of spectral techniques for geoid computations over large areas. J Geod 70(6): 357–373. doi:10.1007/BF00868188

    Google Scholar 

  • Val’ko M, Mojzeš M, Janák J, Papčo J (2008) Comparison of two different solutions to Molodensky’s G 1 term. Studia Geophysica et Geodaetica 52(1): 71–86. doi:10.1007/s11200-008-0006-2

    Article  Google Scholar 

  • van Gelderen (1991) The geodetic boundary value problem in two dimensions and its iterative solution, publication no 35, Netherlands Geodetic Commission, Amsterdam

  • van Gysen H (1994) Thin-plate spline quadrature of geodetic integrals. Bull Geodesique 68(3): 173–179

    Article  Google Scholar 

  • Vaníček P, Kleusberg A (1987) The Canadian geoid—Stokesian approach. manuscripta geodaetica 12(2): 86–98

    Google Scholar 

  • Vaníček P, Krakiwsky EJ (1986) Geodesy: the concepts, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Vening-Meinesz FA (1928) A formula expressing the deflection of the plumb-lines in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid. Proc. Koninkl. Akad. Wetenschaft 31:315–331 (Amsterdam)

    Google Scholar 

  • von Winckel G (2004) Legendre-Gauss Quadrature Weights and Nodes. Matlab function lgwt. http://www.mathworks.com/matlabcentral/fileexchange/4540

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS Trans. AGU 79:579

    Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geod 82(10): 637–653. doi:10.1007/s00190-008-0219-8

    Article  Google Scholar 

  • Zhang C (1993) Recovery of gravity information from satellite altimetry data and associated forward geopotential models. UCGE report no 20058, University of Calgary

  • Zhang C (1995) A general formula and its inverse formula for gravimetric transformations by use of convolution and deconvolution techniques. J Geod 70(1–2): 51–64. doi:10.1007/BF00863418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hirt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirt, C., Featherstone, W.E. & Claessens, S.J. On the accurate numerical evaluation of geodetic convolution integrals. J Geod 85, 519–538 (2011). https://doi.org/10.1007/s00190-011-0451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0451-5

Keywords

Navigation