Abstract
Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krüger’s series for the mapping to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about five times slower.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bugayevskiy LM, Snyder JP (1995) Map projections: a reference manual. Taylor & Francis, London
Bulirsch R (1965) Numerical calculation of elliptic integrals and elliptic functions. Numer Math 7(1): 78–90. doi:10.1007/BF01397975
Carlson BC (1995) Numerical computation of real or complex elliptic integrals. Numer Algorithms 10(1): 13–26. doi:10.1007/BF02198293, E-print arXiv:math/9409227
Clenshaw CW (1955) A note on the summation of Chebyshev series. Math Tables Aids Comput 9(51):118–120. URL http://www.jstor.org/stable/2002068
Dozier J (1980) Improved algorithm for calculation of UTM and geodetic coordinates. Tech. Rep. NESS 81. NOAA. http://fiesta.bren.ucsb.edu/~dozier/Pubs/DozierUTM1980.pdf
Engsager KE, Poder K, (2007) A highly accurate world wide algorithm for the transverse Mercator mapping (almost). In: Proceedings of XXIII international cartographic conference (ICC2007), Moscow, p 2.1.2
Geotrans (2010) Geographic translator, version 3.0. http://earth-info.nga.mil/GandG/geotrans/
Hager JW, Behensky JF, Drew BW (1989) The universal grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS). Tech. Rep. TM 8358.2, Defense Mapping Agency. http://earth-info.nga.mil/GandG/publications/tm8358.2/TM8358_2.pdf
Karney CFF (2010) GeographicLib, version 1.7. http://geographiclib.sf.net
König R, Weise KH (1951) Mathematische Grundlagen der Höheren Geodäsie und Kartographie, vol 1. Springer, Berlin
Krüger JHL (1912) Konforme Abbildung des Erdellipsoids in der Ebene. New Series 52. Royal Prussian Geodetic Institute, Potsdam. doi:10.2312/GFZ.b103-krueger28
Kuittinen R, Sarjakoski T, Ollikainen M, Poutanen M, Nuuros R, Tätilä P, Peltola J, Ruotsalainen R, Ollikainen M (2006) ETRS89—järjestelmä än liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako. Tech. Rep. JHS 154. Finnish Geodetic Institute. http://docs.jhs-suositukset.fi/jhs-suositukset/JHS154/JHS154_liite1.pdf, Appendix 1, Projektiokaavart
Lagrange JL (1770) Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. In: Oeuvres, vol 3. Gauthier-Villars, Paris (1869), pp 5–73. http://books.google.com/books?id=YywPAAAAIAAJ&pg=PA5 reprint of Mém. de l’Acad. Roy. des Sciences de Berlin 24:251–326
Lambert JH (1772) Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten. No. 54 in Klassiker ex. Wiss., Engelmann, Leipzig (1894). http://books.google.com/books?id=o_s_MR3NUD4C, translated into English by W. R. Tobler as Notes and Comments on the Composition of Terrestrial and Celestial Maps, University of Michigan (1972)
Lee LP (1976) Conformal projections based on Jacobian elliptic functions. Cartographica 13(1, Monograph 16): 67–101. doi:10.3138/X687-1574-4325-WM62
Ludwig K (1943) Die der transversalen Mercatorkarte der Kugel entsprechende Abbildung des Rotationsellipsoids. J Reine Angew Math 185(4): 193–230. doi:10.1515/crll.1943.185.193, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002175576
Maxima (2009) A computer algebra system, version 5.20.1. http://maxima.sf.net
Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST Handbook of mathematical functions. Cambridge University Press, Cambridge. http://dlmf.nist.gov
Stuifbergen N (2009) Wide zone transverse Mercator projection. Tech. Rep. 262. Canadian Hydrographic Service. http://www.dfo-mpo.gc.ca/Library/337182.pdf
Thomas PD (1952) Conformal projections in geodesy and cartography. Special Publication 251. US Coast and Geodetic Survey. http://docs.lib.noaa.gov/rescue/cgs_specpubs/QB275U35no2511952.pdf
Wallis DE (1992) Transverse Mercator projection via elliptic integrals. Tech. Rep. NPO-17996. JPL
Whittaker ET, Watson GN (1927) A course of modern analysis, 4th edn. Cambridge University Press, reissued in Cambridge Math. Library Series (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karney, C.F.F. Transverse Mercator with an accuracy of a few nanometers. J Geod 85, 475–485 (2011). https://doi.org/10.1007/s00190-011-0445-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00190-011-0445-3