Journal of Geodesy

, Volume 85, Issue 12, pp 909–920 | Cite as

The international reference ionosphere today and in the future

  • Dieter Bilitza
  • Lee-Anne McKinnell
  • Bodo Reinisch
  • Tim Fuller-Rowell
Review

Abstract

The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth’s ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov.

Keywords

Ionosphere IRI Empirical model F2 peak models Topside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adewale AO, Oyeyemi EO, McKinnell LA (2009) Comparisons of observed ionospheric F2 peak parameters with IRI-2001 predictions over South Africa. J Atmos Solar Terr Phys 71(2): 273–284. doi:10.1016/j.jastp.2008.10.014 CrossRefGoogle Scholar
  2. Altadill D, Arrazola D, Blanch E, Buresova D (2008) Solar activity variations of ionosonde measurements and modeling results. Adv Space Res 42: 610–616. doi:10.1016/j.asr.2007.07.028 CrossRefGoogle Scholar
  3. Altadill D, Torta JM, Blanch E (2009) Proposal of new models of the bottom-side B0 and B1 parameters for IRI. Adv Space Res 43: 1825–1834. doi:10.1016/j.asr.2008.08.0144 CrossRefGoogle Scholar
  4. Angling M, Shaw J, Shukla A, Cannon P (2009) Development of an HF selection tool based on the Electron Density Assimilative Model near-real-time ionosphere. Radio Sci 44: RS0A13. doi:10.1029/2008RS004022 CrossRefGoogle Scholar
  5. Anthes RA, Ector D, Hunt DC, Kuo Y-H, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Wee T-K, Zeng Z, Bernhardt PA, Dymond KF, Chen Y, Liu H, Manning K, Randel WJ, Trenberth KE, Cucurull L, Healy SB, Ho S-P, McCormick C, Meehan TK, Thompson DC (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89: 313–333. doi:10.1175/BAMS-89-3-313 CrossRefGoogle Scholar
  6. Araujo-Pradere EA, Fuller-Rowell TJ, Codrescu MV, Bilitza D (2005) Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity. Radio Sci 40: RS 5009. doi:10.1029/2004RS003179 CrossRefGoogle Scholar
  7. Araujo-Pradere EA, Fuller-Rowell TJ, Spencer PSJ, Minter CF (2007) Differential validation of the US-TEC model. Radio Sci 42: RS3016. doi:10.1029/2006RS003459 CrossRefGoogle Scholar
  8. Benson RF, Bilitza D (2009) New satellite mission with old data: rescuing a unique data set. Radio Sci 44: RS0A04. doi:10.1029/2008RS004036 CrossRefGoogle Scholar
  9. Bent RB, Llewellyn SK, Schmid PE (1972) Description and evaluation of the Bent ionospheric model, vol 1–3. National Information Service, Springfield, Virginia AD-753-081,-082,-083Google Scholar
  10. Bilitza D (1986) International reference ionosphere: recent developments. Radio Sci 21: 343–346CrossRefGoogle Scholar
  11. Bilitza D (1990) International reference ionosphere 1990, NSSDC/ WDC-A-R&S 90-22. National Space Science Data Center, GreenbeltGoogle Scholar
  12. Bilitza D (1995) Including auroral boundaries in the IRI model. Adv Space Res 16(1): 13–16CrossRefGoogle Scholar
  13. Bilitza D, Radicella S, Reinisch B, Adeniyi J, Mosert M, Zhang S, Obrou O (2000) New B0 and B1 models for IRI. Adv Space Res 25(1): 89–95CrossRefGoogle Scholar
  14. Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2): 261–275CrossRefGoogle Scholar
  15. Bilitza D, Huang X, Reinisch B, Benson R, Hills HK, Schar WB (2004) Topside ionogram scaler with true height algorithm (TOPIST): automated processing of ISIS topside ionograms. Radio Sci 39(1): RS1S27. doi:10.1029/2002RS002840 CrossRefGoogle Scholar
  16. Bilitza D, Reinisch BW (2008) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42(4): 599–609. doi:10.1016/j.asr.2007.07.048 CrossRefGoogle Scholar
  17. Brunini C, Van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res 108(A2): 1056. doi:10.1029/2002JA009346 CrossRefGoogle Scholar
  18. Bust GS, Garner TW, Gaussiran TL II (2004) Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm. J Geophys Res 109: A11312. doi:10.1029/2003JA010234 CrossRefGoogle Scholar
  19. CCIR (1966) Atlas of ionospheric characteristics. Report 340-1, 340-6. Comité Consultatif International des Radiocommunications, Genève, Switzerland. ISBN 92-61-04417-4Google Scholar
  20. Cucurull L, Kuo Y-H, Barker D, Rizvi SRH (2006) Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: a case study COSMIC project. Mon Weather Rev 134: 3283–3296CrossRefGoogle Scholar
  21. Daley R (1991) Atmospheric data analysis. Cambridge University Press, CambridgeGoogle Scholar
  22. Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionospheric errors for the dual-frequency GPS user. Radio Sci 43: RS5010. doi:10.1029/2007RS003772 CrossRefGoogle Scholar
  23. Dear R, Mitchell C (2006) GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe. Radio Sci 41: RS6007. doi:10.1029/2005RS003269 CrossRefGoogle Scholar
  24. Depuev VH, Pulinets SA (2004) A global empirical model of the ionospheric topside electron density. Adv Space Res 34: 2016– 2020CrossRefGoogle Scholar
  25. Fernandez JR, Mertens CJ, Bilitza D, Xu X, Russell JM III, Mlynczak MG (2010) Feasibility of developing an ionospheric E-region electron density storm model using TIMED/SABER measurements. Adv Space Res 46(8): 1070–1077. doi:10.1016/j.asr.2010.06.008 CrossRefGoogle Scholar
  26. Friedrich M, Torkar KM, Lehmacher GA, Croskey CL, Mitchell JD, Kudeki E, Milla M (2006) Rocket and incoherent scatter radar common-volume electron measurements of the equatorial lower ionosphere. Geophys Res Lett 33: L08807. doi:10.1029/2005GL024622 CrossRefGoogle Scholar
  27. Fuller-Rowell TJ, Araujo-Pradere E, Codrescu MV (2000) An empirical ionospheric storm-time correction model. Adv Space Res 25(1): 139–146CrossRefGoogle Scholar
  28. Fuller-Rowell T, Araujo-Pradere E, Minter C, Codrescu M, Spencer P, Robertson D, Jacobsen A (2006) US-TEC: a new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci 41. doi:10.10292005RS003393
  29. Garcia R, Crespon F (2008) Radio tomography of the ionosphere: analysis of an underdetermined, ill-posed inverse problem, and regional application. Radio Sci 43: RS2014. doi:10.1029/2007RS003714 CrossRefGoogle Scholar
  30. Garner TW, Gaussiran TL II, Tolman BW, Harris RB, Calfas RS, Gallagher H (2008) Total electron content measurements in ionospheric physics. Adv Space Res 42(4): 720–726. doi:10.1016/j.asr.2008.02.025 CrossRefGoogle Scholar
  31. Gulyaeva T (1987) Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv Space Res 7(6): 39–48CrossRefGoogle Scholar
  32. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New YorkGoogle Scholar
  33. Hernandez-Pajares M, Juan J, Sanz J, Bilitza D (2002) Combining GPS measurements and IRI model values for Space Weather specification. Adv Space Res 29(6): 949–958CrossRefGoogle Scholar
  34. Hocke K, Igarashi K (2002) Structure of the earth’s lower ionosphere observed by GPS/MET radio occultation. J Geophys Res 107(A5). doi:10.1029/2001JA900158
  35. Huang X, Reinisch BW (2001) Vertical electron content from ionograms in real time. Radio Sci 36: 335–342CrossRefGoogle Scholar
  36. Huang X, Reinisch BW, Bilitza D, Benson RF (2002) Electron density profiles of the topside ionosphere. Ann Geophys 45(1): 125–130Google Scholar
  37. Huang X, Reinisch BW, Song P, Nsumei P, Green JL, Gallagher DL (2004) Developing an empirical density model of the plasmasphere using IMAGE/RPI observations. Adv Space Res 33: 829–832CrossRefGoogle Scholar
  38. IGRF (2010) International Geomagnetic Reference Field, Version 11. http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
  39. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33: L15108. doi:10.1029/2006GL026161 CrossRefGoogle Scholar
  40. ISO (2009) Space environment (natural and artificial)—Earth’s ionosphere model: international reference ionosphere and extension to the plasmasphere. Technical Specification TS16457, International Standardization Organization, Geneva, SwitzerlandGoogle Scholar
  41. Jackson JE (1969) The reduction of topside ionograms to electron-density profiles. Proc IEEE 57: 960–976CrossRefGoogle Scholar
  42. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82: 35–45Google Scholar
  43. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–471CrossRefGoogle Scholar
  44. Komjathy A, Lagnley R, Bilitza D (1998) Ingesting GPS-derived TEC data into the international reference ionosphere for single frequency radar altimeter ionosphere delay corrections. Adv Space Res 22(6): 793–802CrossRefGoogle Scholar
  45. Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ (2010) JPL/USC GAIM: on the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res 115: A02307. doi:10.1029/2009JA014420 CrossRefGoogle Scholar
  46. Kutiev I, Marinov P (2007) Topside sounder model of scale height and transition height characteristics of the ionosphere. Adv Space Res 39: 759–766. doi:10.1016/j.asr.2006.06.013 CrossRefGoogle Scholar
  47. Kutiev IS, Marinov PG, Watanabe S (2006) Model of topside ionosphere scale height based on topside sounder data. Adv Space Res 37: 943–950. doi:10.1016/j.asr.2005.11.021 CrossRefGoogle Scholar
  48. Lee JK, Kamalabadi F, Makela JJ (2008) Three-dimensional tomography of ionospheric variability using a dense GPS receiver array. Radio Sci 43: RS3001. doi:10.1029/2007RS003716 CrossRefGoogle Scholar
  49. Llewellyn SK, Bent RB (1973) Documentation and description of the Bent ionospheric model. Report AFCRL-TR-73-0657, Hanscom AFB, MAGoogle Scholar
  50. Lühr H, Hausler K, Stolle C (2007) Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys Res Lett 34: L16102. doi:10.1029/2007GL030639 CrossRefGoogle Scholar
  51. McKinnell LA, Oyeyemi EO (2009) Progress towards a new global foF2 model for the international reference ionosphere (IRI). Adv Space Res 43: 1770–1775. doi:10.1016/j.asr.2008.09.035 CrossRefGoogle Scholar
  52. McNamara LF, Retterer JM, Baker CR, Bishop GJ, Cooke DL, Roth CJ, Welsh JA (2010) Longitudinal structure in the CHAMP electron densities and their implications for global ionospheric modeling. Radio Sci 45: RS2001. doi:10.1029/2009RS004251 CrossRefGoogle Scholar
  53. Mertens C, Winick J, Russell J III, Mlynczak M, Evans D, Bilitza D, Xu X (2007) Empirical storm-time correction to the international reference ionosphere model E-region electron and ion density parameterizations using observations from TIMED/SABER. Proc SPIE Remote Sens Clouds Atmos 12: 67451L. doi:10.1117/12.737318 Google Scholar
  54. Niranjan K, Srivani B, Gopikrishna S, Rama Rao PVS (2007) Spatial distribution of ionization in the equatorial and low-latitude ionosphere of the Indian sector and its effect on the Pierce point altitude for GPS applications during low solar activity periods. J Geophys Res 112: A05304. doi:10.1029/2006JA011989 CrossRefGoogle Scholar
  55. Nsumei P, Reinisch BW, Huang X, Bilitza D (2010) Empirical topside electron density model derived from ISIS satellite sounding data. J Earth Planets Space (submitted)Google Scholar
  56. Orús R, Hernández-Pajares M, Juan JM, Sanz J, García-Fernández M (2002) Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Solar-Terr Phys 64(18): 2055–2062CrossRefGoogle Scholar
  57. Oyeyemi EO (2005) A global ionospheric F2 region peak electron density model using neural networks and extended geophysically relevant inputs. PhD thesis, Rhodes University, Grahamstown, South AfricaGoogle Scholar
  58. Oyeyemi EO, Poole AWV, McKinnell LA (2005) On the global model for foF2 using neural networks. Radio Sci 40: RS6011. doi:1029/2004RS003223 CrossRefGoogle Scholar
  59. Oyeyemi EO, McKinnell LA, Poole AWV (2007) Neural network based prediction techniques for global modeling of M(3000)F2 ionospheric parameter. Adv Space Res 39(5): 643–650. doi:1016/j.asr.2006.09.038 CrossRefGoogle Scholar
  60. Oyeyemi EO, McKinnell LA (2008) A new global F2 peak electron density model for the International Reference Ionosphere (IRI). Adv Space Res 42(4): 645–658. doi:10.1016/j.asr.2007.10.031 CrossRefGoogle Scholar
  61. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12): 1468. doi:10.1029/2002JA009430 CrossRefGoogle Scholar
  62. Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27(1): 35–40CrossRefGoogle Scholar
  63. Rawer K (1988) Synthesis of ionospheric electron density profiles with Epstein functions. Adv Space Res 8(4): 191–198CrossRefGoogle Scholar
  64. Rawer K, Bilitza D, Ramakrishnan S (1978) International reference ionosphere 78. Special Report, International Union of Radio Science (URSI), Brussels, BelgiumGoogle Scholar
  65. Reinisch BW, Huang X, Haines DM, Galkin IA, Green JL, Benson RF, Fung SF, Taylor WWL, Reiff PH, Gallagher DL, Bougeret J-L, Manning R, Carpenter DL, Boardsen SA (2001) First results from the radio plasma imager on IMAGE. Geophys Res Lett 28: 1167–1170CrossRefGoogle Scholar
  66. Reinisch BW, Huang X, Song P, Sales GS, Fung SF, Green JL, Gallagher DL, Vasyliunas VM (2001) Plasma density distribution along the magnetospheric field: RPI observations from IMAGE. Geophys Res Lett 28: 4521–4524CrossRefGoogle Scholar
  67. Reinisch BW, Huang X, Belehaki A, Shi J, Zhang ML, Ilma R (2004) Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements. Adv Space Res 34: 2026–2031. doi:10.1016/j.asr.2004.06.012 CrossRefGoogle Scholar
  68. Reinisch BW, Nsumei P, Huang X, Bilitza DK (2007) Modeling the F2 topside and plasmasphere for IRI using IMAGE/RPI, and ISIS data. Adv Space Res 39: 731–738. doi:10.1016/j.asr.2006.05.032 CrossRefGoogle Scholar
  69. Reinisch BW, Galkin I (2010) Global ionospheric radio observatory (GIRO). Earth Planets Space (submitted)Google Scholar
  70. Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New YorkGoogle Scholar
  71. Rush C, Fox M, Bilitza D, Davies K, McNamara L, Stewart F, PoKempner M (1989) Ionospheric mapping—an update of foF2 coefficients. Telecomm J 56: 179–182Google Scholar
  72. Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L (2006) Utah State University global assimilation of ionospheric measurements gauss-markov kalman filter model of the ionosphere: model description and validation. J Geophys Res 111: A11315. doi:10.1029/2006JA011712 CrossRefGoogle Scholar
  73. Scherliess L, Thompson DC, Schunk RW (2008) Longitudinal variability of low-latitude total electron content: tidal influences. J Geophys Res 113: A01311. doi:10.1029/2007JA012480 CrossRefGoogle Scholar
  74. Schmidt M, Bilitza D, Shum C, Zeilhofer C (2008) Regional 4-D modeling of the ionospheric electron density. Adv Space Res 42(4): 782–790. doi:10.1016/j.asr.2007.02.050 CrossRefGoogle Scholar
  75. Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Anderson DN, Codrescu MV, Minter Cliff, Fuller-Rowell TJ, Heelis RA, Hairston M, Howe BM (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39: RS1S02. doi:10.1029/2002RS002794 CrossRefGoogle Scholar
  76. Szuszczewicz E et al (1993) Measurements and empirical model comparisons of F-region characteristics and auroral boundaries during the solstial SUNDAIL campaign of 1987. Ann Geophys 11: 601–613Google Scholar
  77. Wang C, Hajj G, Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model. Radio Sci 39: RS1S06. doi:10.1029/2002RS002854 CrossRefGoogle Scholar
  78. Zeilhofer C, Schmidt M, Bilitza D, Shum C (2009) Regional 4-D modeling of the ionospheric electron density from satellite data and IRI. Adv Space Res 43(11): 1669–1675. doi:10.1016/j.asr.2008.09.033 CrossRefGoogle Scholar
  79. Zhang Y, Paxton LJ (2008) An empirical Kp-dependent global auroral model based on TIMED/GUVI data. J Atmos Solar-Terr Phys 70: 1231–1242. doi:10.1016/j.jastp.2008.03.008 CrossRefGoogle Scholar
  80. Zhang Y, Paxton LJ, Bilitza D (2010) Near real-time assimilation of auroral peak E-region density and equatorward boundary in IRI. Adv Space Res 46(8): 1055–1063. doi:10.1016/j.asr.2010.06.029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dieter Bilitza
    • 1
    • 2
  • Lee-Anne McKinnell
    • 3
  • Bodo Reinisch
    • 4
  • Tim Fuller-Rowell
    • 5
  1. 1.Space Weather LaboratoryGeorge Mason UniversityFairfaxUSA
  2. 2.Heliospheric LaboratoryNASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Hermanus Magnetic ObservatoryHermanusSouth Africa
  4. 4.Center for Atmospheric ResearchUniversity of Massachusetts LowellLowellUSA
  5. 5.CIRES University of Colorado and NOAA Space Weather Prediction CenterBoulderUSA

Personalised recommendations