Skip to main content

Advertisement

Log in

One centimeter-level observations of diurnal ocean tides from global monthly mean time-variable gravity fields

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A method of analyzing GRACE satellite-to-satellite ranging data is presented which accentuates signals from diurnal ocean tides and dampens signals from long-period non-tidal phenomena. We form a time series of differences between two independent monthly mean gravity solutions, one set computed from range-rate data along strictly ascending arcs and the other set computed from data along descending arcs. The solar and lunisolar diurnal tides having alias periods longer than a few months, such as K 1, P 1, and S 1, present noticeable variations in the monthly ascending and descending ‘difference’ solutions, while the climate-related signals are largely cancelled. By computing tidal arguments evaluated along the actual GRACE orbits, we decompose and estimate residual tidal signals with respect to our adopted prior model GOT4.7. The adjustment in the tidal height is small yet significant, yielding maximum amplitudes of 4 cm mostly under the Antarctic ice shelves and ~1 cm in general at spatial scales of several hundred kilometer. Moreover, the results suggest there are possible 1-cm errors in the tide model even over oceans well-covered by decades of radar altimetry missions. Independent validation of such small adjustments covering wide areas, however, is difficult, particularly with limited point measurements such as tide gauge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bosch W, Savcenko R, Flechtner F, Dahle C, Mayer-Guerr T, Stammer D, Taguchi E, Ilk K-H (2009) Residual ocean tide signals from satellite altimetry, GRACE gravity fields, and hydrodynamic modeling. Geophys J Int 178: 185–1192. doi:10.1111/j.1365-246X.2009.04281.x

    Article  Google Scholar 

  • Cartwright DE, Ray RD (1990) Oceanic tides from Geosat altimetry. J Geophys Res 95: 3069–3090

    Article  Google Scholar 

  • Chen J, Wilson C, Seo K-W (2007) S2 tide aliasing in GRACE time-variable gravity solutions. J Geod 83: 679–687. doi:10.1007/s00190-008-0282-1

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2): 183–204

    Article  Google Scholar 

  • Egbert G, Erofeeva S, Han S-C, Luthcke S, Ray R (2009) Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model. Geophys Res Lett 36: L20609. doi:10.1029/2009GL040376

    Article  Google Scholar 

  • Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified Earth, and a further analysis of post glacial rebound. Geophys J Int 120: 287–311

    Article  Google Scholar 

  • Han S-C, Jekeli C, Shum C (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109: B04403. doi:10.1029/2003JB002501

    Article  Google Scholar 

  • Han S-C, Shum C, Matsumoto K (2005) GRACE observations of M2 and S2 ocean tides below the Filchner-Ronne and Larsen Ice Shelves, Antarctica. Geophys Res Lett 32: L20311. doi:10.1029/2005GL024296

    Article  Google Scholar 

  • Han S-C, Ray R, Luthcke S (2007) Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data. Geophys Res Lett 34: L21607. doi:10.1029/2007GL031540

    Article  Google Scholar 

  • Han S-C, Rowlands DD, Luthcke SB, Lemoine FG (2008) Localized analysis of satellite tracking data for studying time-variable Earth’s gravity fields. J Geophys Res 113: B06401. doi:10.1029/2007JB005218

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco

    Google Scholar 

  • Knudsen P, Andersen O (2002) Correcting GRACE gravity fields for ocean tide effects. Geophys Res Lett 29: 1–4

    Article  Google Scholar 

  • Lefèvre F (2002) Modélisation de la marée océanique à l’échelle globale par la méthode des éléments finis avec assimilation de données altimétriques, CLS-DOS-NT-01.416/SALP-RP-MA-E2-21060-CLS. Ramonville Saint-Agne

  • Lemoine J-M, Bruinsma S, Loyer S, Biancale R, Marty J-C, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39: 1620–1629. doi:10.1016/j.asr.2007.03.062

    Article  Google Scholar 

  • Luthcke SB, Rowlands DD, Lemoine FG, Klosko SM, Chinn D, McCarthy JJ (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33: L02402. doi:10.1029/2005GL024846

    Article  Google Scholar 

  • Moore P, King MA (2008) Antarctic ice mass balance estimates from GRACE: tidal aliasing effects. J Geophys Res 113: F02005. doi:10.1029/2007JF000871

    Article  Google Scholar 

  • Moritz H, Mueller II (1987) Earth rotation: theory and observation. Ungar/Continuum, New York

    Google Scholar 

  • Pavlis DE, Poulose S, McCarthy JJ (2006) GEODYN Operations manuals contractor report. SGT Inc, Greenbelt

    Google Scholar 

  • Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2, NASA Tech, Memorandum 1999-209478. Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Ray RD (2008) A preliminary tidal analysis of ICESat laser altimetry: Southern Ross Ice Shelf. Geophys Res Lett 35: L02505. doi:10.1029/2007GL032125

    Article  Google Scholar 

  • Ray RD, Eanes RJ, Egbert GD, Pavlis NK (2001) Error spectrum for the global M2 ocean tide. Geophys Res Lett 28: 21–24

    Article  Google Scholar 

  • Ray RD, Egbert GD (2004) The global S1 tide. J Phys Ocean 34: 1922–1935

    Article  Google Scholar 

  • Ray RD, Luthcke SB (2006) Tide model errors and GRACE gravimetry: towards a more realistic assessment. Geophys J Int 167: 1055–1059. doi:10.1111/j.1365-246X.2006.03229.x

    Article  Google Scholar 

  • Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85: 381–394

    Article  Google Scholar 

  • Rowlands DD, Ray RD, Chinn DS, Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a mapping mission. J Geod 76: 307–316. doi:10.1007/s00190-002-0255-8

    Article  Google Scholar 

  • Schrama EJO, Wouters B, Lavallée DA (2007) Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations. J Geophys Res 112: B08407. doi:10.1029/2006JB004882

    Article  Google Scholar 

  • Seidelmann PK (1992) Explanatory supplement to the astronomical almanac. University Science Book, Mill Valley

    Google Scholar 

  • Shum CK et al (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11): 25,173–25,194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Chan Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SC., Ray, R.D. & Luthcke, S.B. One centimeter-level observations of diurnal ocean tides from global monthly mean time-variable gravity fields. J Geod 84, 715–729 (2010). https://doi.org/10.1007/s00190-010-0405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0405-3

Keywords

Navigation