Skip to main content
Log in

A case study of using Raman lidar measurements in high-accuracy GPS applications

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper investigates the impact of rapid small-scale water vapor fluctuations on GPS height determination. Water vapor measurements from a Raman lidar are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four short observing sessions (6 h) during the VAPIC experiment (15 May–15 June 2004). The retrieval of wet delays from our Raman lidar is shown to agree well with radiosonde retrievals (bias and standard deviation (SD) were smaller than 1 and 2.8 mm, respectively) and microwave radiometers (from two different instruments, bias was 6.0/−6.6 mm and SD 1.3/3.8 mm). A standard GPS data analysis is shown to fail in accurately reproducing fast zenith wet delay (ZWD) variations. The ZWD estimates could be improved when mean post-fit phase residuals were removed. Several methodologies for integrating zenith lidar observations into the GPS data processing are also presented. The final method consists in using lidar wet delays for correcting a priori the GPS phase observations and estimating a scale factor for the lidar wet delays jointly with the GPS station position. The estimation of this scale factor allows correcting for a mis-calibration in the lidar data and provides in the same way an estimate of the Raman lidar instrument constant. The agreement of this constant with an independent determination using radiosonde data is at the level of 1–4%. The lidar wet delays were derived by ray-tracing from zenith pointing measurements: further improvement in GPS positioning is expected from slant path lidar measurements that would properly account for water vapor anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alber C, Ware R, Rocken C, Solheim F (1997) GPS surveying with 1 mm precision using corrections for atmospheric slant path delay. Geophys Res Lett 24(15): 1859–1862

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112(B9): B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Bevis M, Bussinger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res 97(D14): 15787–15801

    Google Scholar 

  • Bock O, Tarniewicz J, Thom C, Pelon J (2001a) Effect of small-scale atmospheric inhomogeneity on positioning accuracy with GPS. Geophys Res Lett 28(11): 2289–2292

    Article  Google Scholar 

  • Bock O, Tarniewicz J, Thom C, Pelon J, Kasser M (2001b) Study of external path delay correction techniques for high accuracy height determination with GPS. Phys Chem Earth 26: 165–171

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B05406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Bosser P, Bock O, Pelon J, Thom C (2007a) An improved mean gravity model for GPS hydrostatic delay calibration. IEEE Geosci Remote Sens Lett 4(1): 3–7. doi:10.1109/LGRS.2006.881725

    Article  Google Scholar 

  • Bosser P, Bock O, Thom C, Pelon J (2007b) Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements. Appl Opt 46(23): 8170–8180. doi:10.1364/AO.46.008170

    Article  Google Scholar 

  • Braun J, Rocken C, Ware R (2001) Validation of line-of-sight water vapor measurements with GPS. Radiol Sci 26(3): 459–472

    Article  Google Scholar 

  • Champollion C, Masson F, Van Baelen J, Walpersdorf A, Chéry J, Doerflinger E (2004) GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Cévennes (southern France). J Geophys Res 109: D24102. doi:10.1029/2004JD004897

    Article  Google Scholar 

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9): 20489–20502

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radiol Sci 20(6): 593–1607

    Google Scholar 

  • Elosegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the Global Positionning System: the effects of signal scattering on estimates of site position. J Geophys Res 100(B6): 9921–9934

    Article  Google Scholar 

  • Gradinarsky L, Haas R, Elgered G, Johansson J (2000) Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations. Earth Planets Space 52(10): 695–698

    Google Scholar 

  • Haefele P, Martin L, Becker M, Brockmann E, Morland J, Nyeki S, Malttzler C, Kirchner M (2004) Impact of radiometric water vapor measurements on troposphere and height estimates by GPS. In: Proceedings of the 17th international technical meeting of the satellite division of the Institute of Navigation, 21–24 Sept 2004, Long Beach, California

  • Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bounio D, Chepfer H, Chiriaco M, Cuesta J, Delanoë J, Drobinski P, Dufresne J-L, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, O’Hirok B, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275

    Article  Google Scholar 

  • Kleijer F (2004) Troposphere modeling and filtering for precise GPS leveling. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands

  • Kouba J (2008) Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). J Geod 82: 193–205. doi:10.1007/s00190-007-0170-0

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dyn 56: 394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Mader GL (2008) GPS Antenna Calibration at the National Geodetic Survey. Technical report, National Geodetic Survey

  • Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radiol Sci 7(2): 223–231

    Article  Google Scholar 

  • McCarthy DD, Petit G (2003) Models for propagation delays. In: McCarthy DD, Petit G (eds) IERS Conventions (2003). Verlag des Bundesamtes fur Kartographie und Geodasie, Germany

    Google Scholar 

  • McCarthy DD, Petit G (2003) Displacement of Reference Points. In: McCarthy DD, Petit G (eds) IERS Conventions (2003). Verlag des Bundesamtes fur Kartographie und Geodasie, Germany

    Google Scholar 

  • Miloshevich LM, Vömel H, Whiteman DN, Lesht BM, Schmidlin FJ, Russo F (2006) Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J Geophys Res 111: D09S10. doi:10.1029/2005JD006083

    Article  Google Scholar 

  • Niell AE, Coster FS, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS and VLBI. J Atmos Ocean Technol 18: 830–850. doi:10.1175/1520-0426(2001)018

    Article  Google Scholar 

  • Ragheb AE, Clarke PJ, Edwards SJ (2007) GPS sidereal filtering: coordinate- and carrier-phase-level strategies. J Geod 81: 325–335. doi:10.1007/s00190-006-0113-1

    Article  Google Scholar 

  • Revercomb HE, Turner DD, Tobin DC, Knuteson RO, Feltz WF, Barnard J, Bösenberg J, Clough S, Cook D, Ferrare R, Goldsmith J, Gutman S, Halthore R, Lesht B, Liljegren J, Linné H, Michalsky J, Morris V, Porch W, Richardson S, Schmid B, Splitt M, van Hove T, Westwater E, Whiteman D (2003) The ARM program’s water vapor intensive observation periods. Bull Am Meteorol Soc 84(2): 217–236. doi:10.1175/BAMS-84-2-217

    Article  Google Scholar 

  • Rocken C, Sokolovskiy S, Johnson JM, Hunt D (2001) Improved mapping of tropospheric delays. J Atmos Ocean Technol 18: 1205–1213. doi:10.1175/1520-0426(2001)018

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in the use of artificial Satellites for geodesy. Geophys Monogr 15: 247–251

    Google Scholar 

  • Santerre R (1991) Impact of GPS satellite sky distribution. Manuscr Geod 16: 28–53

    Google Scholar 

  • Schoen S, Brunner FK (2008) Atmospheric turbulence theory applied to GPS carrier-phase data. J Geod 82(1): 47–57. doi:10.1007/s00190-007-0156-y

    Article  Google Scholar 

  • Sherlock V, Hauchecorne A, Lenoble J (1999) Methodology for the independant calibration of Raman backscatter water-vapor Lidar systems. Appl Opt 38(27): 5816–5837

    Article  Google Scholar 

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi- technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10-11): 613–623. doi:10.1007/s00190-005-0010-z

    Article  Google Scholar 

  • Shoji Y, Nakamura H, Iwabuchi T, Aonashi K, Seko H, Mishima K, Itagaki A, Ichikawa R, Ohtani Y (2004) Tsukaba GPS dense net campaign observation: improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J Meteorol Soc Jpn 82(1B): 301–314

    Article  Google Scholar 

  • Tarniewicz J (2005) Étude d’une méthode de sondage de la vapeur d’eau dans la troposphère appliquée à la correction de mesures GPS pour l’altimétrie de haute précision. Ph.D. thesis. Université de Versailles, Saint-Quentin, Paris, France (in French)

  • Vömel H, Selkirk H, Miloshevich L, Valverde-Canossa J, Valdès J, Kyrö E, Kivi R, Stolz W, Peng G, Diaz J (2007) Radiation dry bias of the Vaisala RS92 humidity sensor. J Atmos Ocean Technol 6: 953–963. doi:10.1175/JTECH2019.1

    Article  Google Scholar 

  • Ware R, Rocken C, Solheim F, Van Hove T, Alber C, Johnson J (1993) Pointed water vapor radiometer corrections for accurate global positioning system surveying. Geophys Res Lett 20(23): 2635–2638

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans 72(441): 445–446

    Google Scholar 

  • Whiteman DN, Melfi SH, Ferrare RA (1992) Raman Lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl Opt 31(16): 3068–3082

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosser, P., Bock, O., Thom, C. et al. A case study of using Raman lidar measurements in high-accuracy GPS applications. J Geod 84, 251–265 (2010). https://doi.org/10.1007/s00190-009-0362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0362-x

Keywords

Navigation