Journal of Geodesy

, Volume 83, Issue 3–4, pp 263–275 | Cite as

The IGS VTEC maps: a reliable source of ionospheric information since 1998

  • M. Hernández-Pajares
  • J. M. Juan
  • J. Sanz
  • R. Orus
  • A. Garcia-Rigo
  • J. Feltens
  • A. Komjathy
  • S. C. Schaer
  • A. Krankowski
Original Article

Abstract

The International GNSS Service (IGS) Working Group on Ionosphere was created in 1998. Since then, the Scientific community behind IGS, in particular CODE, ESA, JPL and UPC, have been continuosly contributing to reliable IGS combined vertical total electron content (VTEC) maps in both rapid and final schedules. The details on how these products are being generated, performance numbers, proposed improvement as far as VTEC evolution trends during near one Solar Cycle, are summarized in this paper. The confirmation of (1) the good performance of the IGS combined VTEC maps, and (2) the characteristic VTEC variability periods, are two main results of this work.

Keywords

GPS Ionospheric VTEC maps IGS GNSS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afraimovich EL, Astafyeva EI, Oinats AV, Yasukevich Yu. V, Zhivetiev IV (2006) Global electron content and solar activity: comparison with IRI modeling results, poster presentation at IGS Workshop, Darmdstadt, Germany, MayGoogle Scholar
  2. Astafyeva EI, Afraimovich EL, Oinats AV, Yasukevich Yu. V, Zhivetiev IV (2006) Global electron content as a new index of solar activity, 36th COSPAR Scientific Assembly. Held 16–23 July 2006, in Beijing, ChinaGoogle Scholar
  3. Belehaki A, Jakowski N, Reinisch BW (2003) Comparison of ionospheric ionization measurements over Athens using ground ionosonde and GPS-derived TEC values. Radio Sci 28(6): 1105. doi:10.1029/2003RS002868 CrossRefGoogle Scholar
  4. Bellanger E, Blanter EM, Le Mouel J-L, Shnirman MG (2002) Estimation of the 13.63-day lunar tide effect on length of day. J Geophys Res 107(B5): 2102. doi:10.1029/2000JB000076 CrossRefGoogle Scholar
  5. Bilitza D (2001) International Reference Ionosphere 2000. Radio Sci 36(2): 261–275CrossRefGoogle Scholar
  6. Coker C, Kronschnabl G, Coco DS, Bust GS, Gaussiran TL II (2001) Verification of ionospheric sensors. Radio Sci 36(6): 1523–1529CrossRefGoogle Scholar
  7. Coster A, Komjathy A (2008) Space weather and the global positioning system. Space Weather 6: S06D04. doi:10.1029/2008SW000400 CrossRefGoogle Scholar
  8. Dow JM, Neilan RE, Gendt G (2005) The International GPS Service (IGS): Celebrating the 10th Anniversary and Looking to the Next Decade. Adv Space Res 36(3): 320–326. doi:10.1016/j.asr.2005.05.125 2005CrossRefGoogle Scholar
  9. Fagundes PR, Pillat VG, Bolzan MJA, Sahai Y, Becker-Guedes F, Abalde JR, Aranha SL (2005) Observations of F layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region. J Geophys Res 110: A12302. doi:10.1029/2005JA011115 CrossRefGoogle Scholar
  10. Feltens J (1998) Chapman Profile Approach for 3-d Global TEC Representation, IGS Presentation. In: Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, Germany, 9–11 February, pp 285–297Google Scholar
  11. Feltens J (2007) Development of a new three-dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre. Space Weather 5: S12002. doi:10.1029/2006SW000294 CrossRefGoogle Scholar
  12. Feltens J, Schaer S (1998) IGS Products for the Ionosphere, IGS Position Paper. In: Proceedings of the IGS analysis centers workshop, ESOC, Darmstadt, Germany, pp 225–232, 9–11 FebruaryGoogle Scholar
  13. Gao Y, Heroux P, Kouba J (1994) Estimation of GPS receiver and satellite L1/L2 signal delay biases using data from CACS. In: Proceedings of KIS-94, pp 109–117, Banff, Canada, 30 August–2 SeptemberGoogle Scholar
  14. Heelis RA, Coley WR (1992) East-west ion drifts at mid-latitutdes observed by dynamics explorer 2. J Geophys Res 97(A12): 19461–19469CrossRefGoogle Scholar
  15. Hernández-Pajares M (2004) IGS Ionosphere WG status report: performance of IGS Ionosphere TEC Maps -Position Paper-, presented at IGS Technical Meeting, Bern, SwitzerlandGoogle Scholar
  16. Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61: 1237–1247CrossRefGoogle Scholar
  17. Hernández-Pajares M, Juan JM, Sanz J, Colombo OL (2000) Application of ionospheric tomography to real-time GPS carrier-phase ambiguities resolution, at scales of 400–1000 km and with high geomagnetic activity. Geophys Res Lett 27(13): 2009–2012CrossRefGoogle Scholar
  18. Hernández-Pajares M, Juan JM, Sanz J (2008) GPS data processing: code and phase Algorithms, Techniques and Recipes. http://www.gage.es/TEACHING_MATERIAL/GPS_BOOK/ENGLISH/PDGPS/BOOK_PDGPS_gAGE_NAV_08.pdf, Barcelona, issue 2E, February
  19. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33: 565–582CrossRefGoogle Scholar
  20. Orus R, Cander LR,2, Hernández-Pajares M (2007) Testing regional vertical total electron content maps over Europe during the 1721 January 2005 sudden space weather event. Radio Sci 42:RS3004. doi:10.1029/2006RS003515
  21. Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System Observations. Radio Sci 29: 577CrossRefGoogle Scholar
  22. Schaer S (1999) Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D. Dissertation Astronomical Institute, University of Berne, Berne, Switzerland, 25 MarchGoogle Scholar
  23. Schaer S (2003) IGS GLONASS tracking data. IGS Mail No. 4371, 8 MayGoogle Scholar
  24. Stening RJ, Fejer BG (2001) Lunar tide in the equatorial F region vertical ion drift velocity. J Geophys Res 106(A1): 221–226CrossRefGoogle Scholar
  25. Stening RJ, Richmond AD, Roble RG (1999) Lunar tides in the Thermosphere-Ionosphere-Electrodynamics General Circulation Model. J Geophys Res 104(A1): 1–13CrossRefGoogle Scholar
  26. Wang X, Eastes R, Weichecki Vergara S, Bailey S, Valladares C, Woods T (2006) On the short-term relationship between solar soft X-ray irradiances and equatorial total electron content (TEC). J Geophys Res 111: A10S15. doi:10.1029/2005JA011488 CrossRefGoogle Scholar
  27. Wilson BD, Mannucci AJ (1993) Instrumental biases in ionospheric measurements derived from gps data. In: Proceedings of the Institute of Navigation GPS-93, pp 1343–1351, SeptemberGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Hernández-Pajares
    • 1
  • J. M. Juan
    • 1
  • J. Sanz
    • 1
  • R. Orus
    • 2
  • A. Garcia-Rigo
    • 1
  • J. Feltens
    • 3
  • A. Komjathy
    • 4
  • S. C. Schaer
    • 5
  • A. Krankowski
    • 6
  1. 1.gAGE/UPC Mod C3 Campus NordBarcelonaSpain
  2. 2.Propagation SectionESTEC/ESANordwijkThe Netherlands
  3. 3.ESOC/ESADarmstadtGermany
  4. 4.JPL/NASAPasadenaUSA
  5. 5.CODE/swisstopoBern/WabernSwitzerland
  6. 6.UWM at OlsztynOlsztynPoland

Personalised recommendations