Skip to main content

Dixon resultant’s solution of systems of geodetic polynomial equations

Abstract

The Dixon resultant is proposed as an alternative to Gröbner basis or multipolynomial resultant approaches for solving systems of polynomial equations inherent in geodesy. Its smallness in size, high density (ratio on the number of nonzero elements to the number of all elements), speed, and robustness (insensitive to combinatorial sequence and monomial order, e.g., Gröbner basis) makes it extremely attractive compared to its competitors. Using 3D-intersection and conformal C 7 datum transformation problems, we compare its performance to those of the Sturmfels’s resultant and Gröbner basis. For the 3D-intersection problem, Sturmfels’s resultant needed 0.578 s to solve a 6  ×  6 resultant matrix whose density was 0.639, the Dixon resultant on the other hand took 0.266 s to solve a 4  ×  4 resultant matrix whose density was 0.870. For the conformal C 7 datum transformation problem, the Dixon resultant took 2.25 s to compute a quartic polynomial in scale parameter whereas the computaton of the Gröbner basis fails. Using relative coordinates to compute the quartic polynomial in scale parameter, the Gröbner basis needed 0.484 s, while the Dixon resultant took 0.016 s. This highlights the robustness of the Dixon resultant (i.e., the capability to use both absolute and relative coordinates with any order of variables) as opposed to Gröbner basis, which only worked well with relative coordinates, and was sensitive to the combinatorial sequence and order of variables. Geodetic users uncomfortable with lengthy expressions of Gröbner basis or multipolynomial resultants, and who aspire to optimize on the attractive features of Dixon resultant, may find it useful.

This is a preview of subscription content, access via your institution.

References

  • Awange JL (2002) Gröbner bases, multipolynomial resultants and the Gauss–Jacobi combinatorial algorithm—adjustment of nonlinear GPS/LPS observations. Geodätisches Institut der Universität Stuttgart, Ph.D dissertation

  • Awange JL and Grafarend EW (2003). Closed form solution of the overdetermined nonlinear 7 parameter datum transformation. Allgemeine Vermessungsnachrichten 110: 130–149

    Google Scholar 

  • Awange JL and Grafarend EW (2005). Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin

    Google Scholar 

  • Awange JL, Grafarend EW and Fukuda Y (2003). Closed-form solution of the triple three-dimensional intersection problem. Zeitschrift für Geodäsie Geoinformation und Landmanagement 128: 395–402

    Google Scholar 

  • Bancroft S (1985). An algebraic solution of the GPS equations. IEEE Trans Aerospace Electron Syst AES- 21: 56–59

    Article  Google Scholar 

  • Bellomo N, Preziosi L and Romano A (2000). Mechanics and dynamical systems with Mathematica. Birkhäuser, Boston

    Google Scholar 

  • Bernstein DS (2005) Matrix mathematics. Princeton University Press, Princeton, p 142

  • Buchberger B and Winkler F (1998). Gröbner basis and applications. London mathematical society lecture note series 251. Cambridge University Press, Cambridge

    Google Scholar 

  • Canny JF and Emiris IZ (2000). A subdivision based algorithm for the sparse resultant. ACM 47(3): 417–451

    Article  Google Scholar 

  • Cayley A (1865). On the theory of elimination. Camb Dublin Math J III: 210–270

    Google Scholar 

  • Chtcherba AD and Kapur D (2004). Construction Sylvester-type resultant matrices using the Dixon formulation. J Symb Comput 38: 777–814

    Article  Google Scholar 

  • Chtcherba AD, Kapur D, Minimair M (2005) Cayley–Dixon construction of resultants of multi-univariate composed polynomials, University of New Mexico, Department of Computer Science, technical report TR-CS-2005-15, April

  • Dixon AL (1908). The eliminant of three quantics in two independent variables. Proc London Math Soc 6: 468–478

    Article  Google Scholar 

  • Freeman JA (1994). Simulating neural networks with Mathematica. Addison-Wesley, New York

    Google Scholar 

  • Grafarend EW and Shan J (1996). Closed-form solution of the nonlinear pseudoranging equations (GPS). Artif Satell 31: 133–147

    Google Scholar 

  • Haneberg WC (2004). Computational geosciences with mathematics. Springer, Berlin

    Google Scholar 

  • Helton JW and Merino O (1998). Classical control using H methods. SIAM, Philadelphia

    Google Scholar 

  • Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In: ACM ISSAC 94. Oxford, July, pp 99–107

  • Kleusberg A (1994). Die direkte Lösung des räumlichen Hyperbelschnitts. Zeitschrift für Vermessungswesen 119: 188–192

    Google Scholar 

  • Kleusberg A (2003). Analytical GPS navigation solution. In: Grafarend, EW, Krumm, FW and Schwarze, VS (eds) Geodesy—the challenge of the 3rd millennium, pp 93–96. Springer, Berlin

    Google Scholar 

  • Lichtenegger H (1995). Eine direkte Lösung des räumlichen Bogenschnitts. Österreichische Zeitschrift für Vermessung und Geoinformation 83: 224–226

    Google Scholar 

  • Macaulay FS (1916). The algebraic theory of modular systems. Camb Tracts Math and Math Phys. Vol. 19. Cambridge University Press, Cambridge

    Google Scholar 

  • Manocha D (1994). Solving systems of polynomial equations. IEEE Comput Graphics Appl March: 46–55

    Article  Google Scholar 

  • Nakos G and Williams R (1997). Elimination with the Dixon resultant. Math Educ Res 6: 11–21

    Google Scholar 

  • Nakos G, Williams R (2002) A fast algorithm implemented in Mathematica provides one-step elimination of a block of unknowns from a system of polynomial equations, Wolfram Research- Mathematica Information Center, electronic publication. http://wolfram.com/infocenter/Articles/2597

  • Paláncz B, Awange JL, Grafarend EW (2007) Computer algebra solution of the GPS N-points problem, GPS Solutions, GPS Toolbox. Springer, Berlin. doi:10.1007/s10290-007-0066-8

  • Romeny BMH (2003). Front-end vision and multi-scale image analysis. Kluwer, Dordrecht

    Google Scholar 

  • Salmon G (1859). Lessons introductory of the modern higher algebra. Hodges and Smith, Dublin

    Google Scholar 

  • Singer P, Ströbel D, Hördt R, Bahndorf J and Linkwitz K (1993). Direkte Lösung des räumlichen Bogenschnitts. Zeitschrift für Vermessungswesen 124: 295–297

    Google Scholar 

  • Sturmfels B (1994). Multigraded resultant of Sylvester type. J Algebr 163: 115–127

    Article  Google Scholar 

  • Sylvester JJ (1853). On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Strum’s functions and that of the greatest algebraic common measure. Philos Trans 143: 407–548

    Article  Google Scholar 

  • Trott M (2005). Mathematica guide book for symbolic computation. Springer, New York

    Google Scholar 

  • Zaletnyik P, Paláncz B, Awange JL, Grafarend EW (2007) Application of CAS to geodesy: a “live” approach, IUGG XXIV General Assembly, “Earth: our changing planet”, Perugia, Italy, 2–13 July 2007, IAG Symposia, Springer Verlag Berlin, Heidelberg, New York, Vol 133 (in press)

  • Zavoti J and Jancso T (2006). The solution of the 7-parameter datum transformation problem with- and without the Gröbner basis. Acta Geod Geoph Hung 41(1): 87–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Paláncz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paláncz, B., Zaletnyik, P., Awange, J.L. et al. Dixon resultant’s solution of systems of geodetic polynomial equations. J Geod 82, 505–511 (2008). https://doi.org/10.1007/s00190-007-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0199-0

Keywords

  • Dixon resultant
  • System of polynomial equations
  • Datum transformation
  • Intersection
  • Computer algebra systems