Advertisement

Journal of Geodesy

, Volume 82, Issue 8, pp 505–511 | Cite as

Dixon resultant’s solution of systems of geodetic polynomial equations

  • Béla PalánczEmail author
  • Piroska Zaletnyik
  • Joseph L. Awange
  • Erik W. Grafarend
Original Article

Abstract

The Dixon resultant is proposed as an alternative to Gröbner basis or multipolynomial resultant approaches for solving systems of polynomial equations inherent in geodesy. Its smallness in size, high density (ratio on the number of nonzero elements to the number of all elements), speed, and robustness (insensitive to combinatorial sequence and monomial order, e.g., Gröbner basis) makes it extremely attractive compared to its competitors. Using 3D-intersection and conformal C 7 datum transformation problems, we compare its performance to those of the Sturmfels’s resultant and Gröbner basis. For the 3D-intersection problem, Sturmfels’s resultant needed 0.578 s to solve a 6  ×  6 resultant matrix whose density was 0.639, the Dixon resultant on the other hand took 0.266 s to solve a 4  ×  4 resultant matrix whose density was 0.870. For the conformal C 7 datum transformation problem, the Dixon resultant took 2.25 s to compute a quartic polynomial in scale parameter whereas the computaton of the Gröbner basis fails. Using relative coordinates to compute the quartic polynomial in scale parameter, the Gröbner basis needed 0.484 s, while the Dixon resultant took 0.016 s. This highlights the robustness of the Dixon resultant (i.e., the capability to use both absolute and relative coordinates with any order of variables) as opposed to Gröbner basis, which only worked well with relative coordinates, and was sensitive to the combinatorial sequence and order of variables. Geodetic users uncomfortable with lengthy expressions of Gröbner basis or multipolynomial resultants, and who aspire to optimize on the attractive features of Dixon resultant, may find it useful.

Keywords

Dixon resultant System of polynomial equations Datum transformation Intersection Computer algebra systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awange JL (2002) Gröbner bases, multipolynomial resultants and the Gauss–Jacobi combinatorial algorithm—adjustment of nonlinear GPS/LPS observations. Geodätisches Institut der Universität Stuttgart, Ph.D dissertationGoogle Scholar
  2. Awange JL and Grafarend EW (2003). Closed form solution of the overdetermined nonlinear 7 parameter datum transformation. Allgemeine Vermessungsnachrichten 110: 130–149 Google Scholar
  3. Awange JL and Grafarend EW (2005). Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin Google Scholar
  4. Awange JL, Grafarend EW and Fukuda Y (2003). Closed-form solution of the triple three-dimensional intersection problem. Zeitschrift für Geodäsie Geoinformation und Landmanagement 128: 395–402 Google Scholar
  5. Bancroft S (1985). An algebraic solution of the GPS equations. IEEE Trans Aerospace Electron Syst AES- 21: 56–59 CrossRefGoogle Scholar
  6. Bellomo N, Preziosi L and Romano A (2000). Mechanics and dynamical systems with Mathematica. Birkhäuser, Boston Google Scholar
  7. Bernstein DS (2005) Matrix mathematics. Princeton University Press, Princeton, p 142Google Scholar
  8. Buchberger B and Winkler F (1998). Gröbner basis and applications. London mathematical society lecture note series 251. Cambridge University Press, Cambridge Google Scholar
  9. Canny JF and Emiris IZ (2000). A subdivision based algorithm for the sparse resultant. ACM 47(3): 417–451 CrossRefGoogle Scholar
  10. Cayley A (1865). On the theory of elimination. Camb Dublin Math J III: 210–270 Google Scholar
  11. Chtcherba AD and Kapur D (2004). Construction Sylvester-type resultant matrices using the Dixon formulation. J Symb Comput 38: 777–814 CrossRefGoogle Scholar
  12. Chtcherba AD, Kapur D, Minimair M (2005) Cayley–Dixon construction of resultants of multi-univariate composed polynomials, University of New Mexico, Department of Computer Science, technical report TR-CS-2005-15, AprilGoogle Scholar
  13. Dixon AL (1908). The eliminant of three quantics in two independent variables. Proc London Math Soc 6: 468–478 CrossRefGoogle Scholar
  14. Freeman JA (1994). Simulating neural networks with Mathematica. Addison-Wesley, New York Google Scholar
  15. Grafarend EW and Shan J (1996). Closed-form solution of the nonlinear pseudoranging equations (GPS). Artif Satell 31: 133–147 Google Scholar
  16. Haneberg WC (2004). Computational geosciences with mathematics. Springer, Berlin Google Scholar
  17. Helton JW and Merino O (1998). Classical control using H methods. SIAM, Philadelphia Google Scholar
  18. Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In: ACM ISSAC 94. Oxford, July, pp 99–107Google Scholar
  19. Kleusberg A (1994). Die direkte Lösung des räumlichen Hyperbelschnitts. Zeitschrift für Vermessungswesen 119: 188–192 Google Scholar
  20. Kleusberg A (2003). Analytical GPS navigation solution. In: Grafarend, EW, Krumm, FW and Schwarze, VS (eds) Geodesy—the challenge of the 3rd millennium, pp 93–96. Springer, Berlin Google Scholar
  21. Lichtenegger H (1995). Eine direkte Lösung des räumlichen Bogenschnitts. Österreichische Zeitschrift für Vermessung und Geoinformation 83: 224–226 Google Scholar
  22. Macaulay FS (1916). The algebraic theory of modular systems. Camb Tracts Math and Math Phys. Vol. 19. Cambridge University Press, Cambridge Google Scholar
  23. Manocha D (1994). Solving systems of polynomial equations. IEEE Comput Graphics Appl March: 46–55 CrossRefGoogle Scholar
  24. Nakos G and Williams R (1997). Elimination with the Dixon resultant. Math Educ Res 6: 11–21 Google Scholar
  25. Nakos G, Williams R (2002) A fast algorithm implemented in Mathematica provides one-step elimination of a block of unknowns from a system of polynomial equations, Wolfram Research- Mathematica Information Center, electronic publication. http://wolfram.com/infocenter/Articles/2597
  26. Paláncz B, Awange JL, Grafarend EW (2007) Computer algebra solution of the GPS N-points problem, GPS Solutions, GPS Toolbox. Springer, Berlin. doi: 10.1007/s10290-007-0066-8
  27. Romeny BMH (2003). Front-end vision and multi-scale image analysis. Kluwer, Dordrecht Google Scholar
  28. Salmon G (1859). Lessons introductory of the modern higher algebra. Hodges and Smith, Dublin Google Scholar
  29. Singer P, Ströbel D, Hördt R, Bahndorf J and Linkwitz K (1993). Direkte Lösung des räumlichen Bogenschnitts. Zeitschrift für Vermessungswesen 124: 295–297 Google Scholar
  30. Sturmfels B (1994). Multigraded resultant of Sylvester type. J Algebr 163: 115–127 CrossRefGoogle Scholar
  31. Sylvester JJ (1853). On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Strum’s functions and that of the greatest algebraic common measure. Philos Trans 143: 407–548 CrossRefGoogle Scholar
  32. Trott M (2005). Mathematica guide book for symbolic computation. Springer, New York Google Scholar
  33. Zaletnyik P, Paláncz B, Awange JL, Grafarend EW (2007) Application of CAS to geodesy: a “live” approach, IUGG XXIV General Assembly, “Earth: our changing planet”, Perugia, Italy, 2–13 July 2007, IAG Symposia, Springer Verlag Berlin, Heidelberg, New York, Vol 133 (in press)Google Scholar
  34. Zavoti J and Jancso T (2006). The solution of the 7-parameter datum transformation problem with- and without the Gröbner basis. Acta Geod Geoph Hung 41(1): 87–100 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Béla Paláncz
    • 1
    Email author
  • Piroska Zaletnyik
    • 2
  • Joseph L. Awange
    • 3
  • Erik W. Grafarend
    • 4
  1. 1.Department of Photogrammetry and GeoinformaticsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Geodesy and SurveyingBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Western Australian Centre for GeodesyCurtin University of TechnologyPerthAustralia
  4. 4.Department of Geodesy and GeoinformaticsUniversity of StuttgartStuttgartGermany

Personalised recommendations