Skip to main content
Log in

Short Note: A global model of pressure and temperature for geodetic applications

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The empirical model GPT (Global Pressure and Temperature), which is based on spherical harmonics up to degree and order nine, provides pressure and temperature at any site in the vicinity of the Earth’s surface. It can be used for geodetic applications such as the determination of a priori hydrostatic zenith delays, reference pressure values for atmospheric loading, or thermal deformation of Very Long Baseline Interferometry (VLBI) radio telescopes. Input parameters of GPT are the station coordinates and the day of the year, thus also allowing one to model the annual variations of the parameters. As an improvement compared with previous models, it reproduces the large pressure anomaly over Antarctica, which can cause station height errors in the analysis of space-geodetic data of up to 1 cm if not considered properly in troposphere modelling. First tests at selected geodetic observing stations show that the pressure biases considerably decrease when using GPT instead of the very simple approaches applied to various Global Navigation Satellite Systems (GNSS) software packages so far. GPT also provides an appropriate model for the annual variability of global temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg H (1948) Allgemeine Meteorologie. Dümmler, Bonn

    Google Scholar 

  • Boehm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406 . doi: 10.1029/2005JB003629

    Article  Google Scholar 

  • Boehm J, Niell AE, Tregoning P, Schuh H (2006b) The Global Mapping Function (GMF): A new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33:L07304 doi: 10.1029/2005GL025546

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74:4487–4499

    Article  Google Scholar 

  • Hugentobler U, Dach R, Fridez P, Meindl M (eds) (2006) Bernese GPS Software Version 5.0. Astronomical Institute, University of Berne

  • King RW, Bock Y (2006) Documentation for the GAMIT GPS processing software Release 10.2. MIT, Cambridge

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-20681, NASA, Greenbelt

  • MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1):637–651

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy, American Geophysics Union. Geophys Monogr Ser 15:274–251

    Google Scholar 

  • Tregoning P, Herring TA (2006) Impact of a priori hydrostatic zenith delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303 doi:10.1029/2006GL027706

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012, doi:10.1256/qj.04.176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Boehm.

Electronic supplementary material

The material is unfortunately not in the Publisher's archive anymore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehm, J., Heinkelmann, R. & Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J Geod 81, 679–683 (2007). https://doi.org/10.1007/s00190-007-0135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0135-3

Keywords

Navigation