Skip to main content
Log in

Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The combination of tropospheric parameters derived from different space-geodetic techniques has not been of large interest in geodesy so far. However, due to the high correlation between station coordinates and tropospheric parameters, the latter should not be neglected in combinations. This paper deals with the comparison and combination of tropospheric parameters derived from global positioning system (GPS) and very long baseline interferometry (VLBI) observations stemming from a 15-day campaign of continuous VLBI observations in 2002 (CONT02). The observation data of both techniques were processed homogeneously to avoid systematic differences between the solutions. We compared the tropospheric estimates of GPS and VLBI at eight co-location sites and found a very good agreement in the temporal behavior of the tropospheric zenith path delays (ZPD), reflected by correlation factors up to 0.98. Following this, a combination of the tropospheric parameters was performed. We demonstrate that the combination of tropospheric parameters leads to a stabilization of combined station networks. This becomes visible in the improvement of the repeatabilities of the station height components. Furthermore, the potential use of independent data from water vapor radiometers (WVRs) to validate space-technique-derived tropospheric parameters was investigated. Correlation coefficients of 0.95 or better were estimated between the tropospheric parameters of WVR and GPS or VLBI. Additionally, the utility of the tropospheric parameters for validation of local tie vectors was investigated. Both tropospheric zenith delays and tropospheric gradients were found to be very suitable to validate the height component and the horizontal components of the local tie, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B19):2214 . DOI 10.1029/2001JB000561

    Article  Google Scholar 

  • Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within GGOS perspective. J Geodyn 40(4–5):363–374. DOI 10.1016/j.jog.2005.06.002

    Article  Google Scholar 

  • Berg H (1984) Allgemeine Meteorologie. Dümmler-Verlag, Bonn

    Google Scholar 

  • Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The ITRF2000. IERS ITRS Centre, IERS Technical Note 31, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

  • Braun J, Stephans B, Ruud O, Meertens C (1997) The effect of antenna covers on GPS baseline solutions. University NAVSTAR Consortium, Boulder. Available at http://www.unavco.org /facility/science_tech/dev_test/publications/dome_report/domeX5Freport-1.html

  • Elgered G (1993) Tropospheric radio path delay from ground-based microwave radiometry. In: Janssen M (ed) Atmospheric remote sensing by microwave radiometry. Wiley, New York, pp 215–258

    Google Scholar 

  • Elgered G, Haas R (2003) The geodetic VLBI network station at the Onsala Space Observatory—activities during 2002. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Leipzig

  • Elgered G, Lundh P (1983) A dual channel water vapor radiometer system. Res. Rep. 145, Chalmers University of Technology, Research Laboratory of Electronics and Onsala Space Observatory, Onsala

  • Gambis D (2004) Monitoring earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78(4–5):295–303. DOI 10.1007/s00190-004-0394-1

    Article  Google Scholar 

  • Haas R, Eschelbach C (2005) The 2002 local tie at the Onsala Space Observatory. In: Richter B, Schwegmann W, Dick W (eds) Proceedings of the IERS workshop on site co-location, vol 33. Matera, 23–24 October 2003. IERS Technical Note, pp 55–63

  • Hugentobler U, Dach R, Fridez P (2004) (eds) Bernese GPS Software, Version 5.0. Astronomical Institute, University of Berne

  • Kaniuth K, Huber S (2003) An assessment of radome effects on height estimation in the EUREF network. In: Torre J, Hornik H (eds) Mitteilungen des Bundesamtes für Kartographie und Geodäsie, vol 29, pp 97–102

  • Krügel M, Tesmer V, Angermann D, Thaller D, Rothacher M, Schmid R (2004) CONT02 Campaign—combination of VLBI and GPS. In: Vandenberg N, Baver K (eds) International VLBI service for Geodesy and Astrometry 2004 General meeting proceedings, NASA/CP-2004-212255, Greenbelt, pp 418–422

  • MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22:1041–1044

    Article  Google Scholar 

  • MacMillan D, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24:453–456

    Article  Google Scholar 

  • McCarthy D, Petit G (2004) IERS Conventions 2003, IERS Technical Note 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

  • Moritz H (1992) Geodetic reference system 1980. Bull Geod 66(2):187–192

    Article  Google Scholar 

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246

    Article  Google Scholar 

  • Niell A, Coster A, Solheim F, Mendes V, Toor P, Langley R, Upham C (2001) Comparison of measurements of atmospheric wet delay by radiosonde water vapor radiometer, GPS and VLBI. J Atmos Ocean Technol 18:830–850

    Article  Google Scholar 

  • Nothnagel, A (2000) Der Einfluss des Wasserdampfes auf die modernen raumgestützen Messverfahren. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, 16, Frankfurt a. M.

  • Pottiaux E, Becker M, Bürki B, Gyger R, Häfele P, Plötz C, Schlüter W, Schwarz W, Somieski A, Warnant R (2003) The RadCalWet Observation Campaign. EGS-AGU-EUG Joint Assembly. Nice, 6–11 April 2003, Geophysical Research Abstracts, vol 6

  • Rothacher M, Beutler G (1998) The role of GPS in the study of global change. Phys Chem Earth 23(9–10):1029–1040

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in the use of artificial satellites for geodesy. Geophys Monogr 15:247–251

    Google Scholar 

  • Saastamoinen J (1973) Contribution to the theory of atmospheric refraction, Bull Géod 105, 279–298, 106, 383–397, 107, 13–34

  • Sarti P, Sillard P, Vittiarri L (2004) Surveying co-located space geodetic instruments for ITRF computation. J Geod 78(3):210–222. DOI 10.1007/s00190-004-0387-0

    Article  Google Scholar 

  • Schlüter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2):145–150

    Article  Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut 9(4):283–293. DOI 10.1007/s10291-005-0134-x

    Article  Google Scholar 

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived during CONT02 campaign. J Geod 79(10–11):616–623. DOI 10.1007/s00190-005-0010-z

    Google Scholar 

  • Steigenberger P, Schmid R, Rothacher M, Tesmer V, Krügel M, Vey S (2005) Homogeneous long-time series of GPS and VLBI troposphere parameters. EGU General Assembly, 25–29 April 2005, Vienna, Geophysical Research Abstracts, vol 7

  • Steinforth C, Haas R, Lidberg M, Nothnagel A (2003) Stability of space geodetic rReference points at Ny-Å lesund and their excentricity vectors. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for Geodesy and Astrometry, Bundesamt für Kartographie und Geodäsie, Leipzig

  • Thaller D, Dill R, Krügel M, Steigenberger P, Rothacher M, Tesmer V (2006) CONT02 analysis and combination of long EOP series. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Berlin

  • Thaller D, Krügel M, Schmid R, Rothacher M, Tesmer V (2006) Combined earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod (in press)

  • Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg N, Baver K (eds) International VLBI Service for Geodesy and Astrometry 2004 general meeting proceedings, NASA/CP-2004-212255, Greenbelt, pp 311–314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Krügel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krügel, M., Thaller, D., Tesmer, V. et al. Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geod 81, 515–527 (2007). https://doi.org/10.1007/s00190-006-0127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0127-8

Keywords

Navigation