Journal of Geodesy

, Volume 81, Issue 5, pp 351–358 | Cite as

Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping

Original Article

Abstract

In this contribution, we study the dependence of the bootstrapped success rate on the precision of the GNSS carrier phase ambiguities. Integer bootstrapping is, because of its ease of computation, a popular method for resolving the integer ambiguities. The method is however known to be suboptimal, because it only takes part of the information from the ambiguity variance matrix into account. This raises the question in what way the bootstrapped success rate is sensitive to changes in precision of the ambiguities. We consider two different cases. (1) The effect of improving the ambiguity precision, and (2) the effect of using an approximate ambiguity variance matrix. As a by-product, we also prove that integer bootstrapping is optimal within the restricted class of sequential integer estimators.

Keywords

GNSS ambiguity resolution Integer bootstrapping Ambiguity precision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boon F, Ambrosius B (1997) Results of real-time applications of the LAMBDA method in GPS based aircraft landings. In: Proceedings KIS97, pp. 339–345Google Scholar
  2. Boon F, de Jonge PJ, Tiberius CCJM (1997) Precise aircraft positioning by fast ambiguity resolution using improved troposphere modelling. In: Proceedings ION GPS-97, vol 2, pp 1877–1884Google Scholar
  3. Chang XW, Yang X, Zhou T (2005) MLAMBDA: a modified LAMBDA method for integer ambiguity determination. In: Proceedings ION GNSS2005, Long Beach, CA, USAGoogle Scholar
  4. Cox DB, Brading JDW (1999) Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft. In: Proceedings ION NTM 99, pp 739–745Google Scholar
  5. Dai L, Nagarajan N, Hu G, Ling K (2005) Real-time attitude determination for micro satellites by LAMBDA method combined with Kalman filtering. In: AIAA proceedings 22nd ICSSC, Monterey, CA, USAGoogle Scholar
  6. de Jonge PJ, Tiberius CCJM (1996a) The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Computing Centre, LGR-Series No. 12Google Scholar
  7. de Jonge PJ, Tiberius CCJM (1996b) Integer estimation with the LAMBDA method. In: Beutler G et al. (eds) Proceedings IAG Symposium No. 115, GPS trends in terrestrial, airborne and spaceborne applications. Springer, Berlin Heidelberg New York, pp 280–284Google Scholar
  8. de Jonge PJ, Tiberius CCJM, Teunissen PJG (1996) aspects of the LAMBDA method for GPS ambiguity resolution. In: Proceedings ION GPS-96, pp 935–944Google Scholar
  9. Han S (1995) Ambiguity resolution techniques using integer least- squares estimation for rapid static or kinematic positioning. Symposium Satellite Navigation Technology: 1995 and beyond, Brisbane, 10 ppGoogle Scholar
  10. Hofmann-Wellenhof B, Lichtenegger H, Collins J (1997) Global positioning system: theory and practice, 4th edn. Springer, Heidelberg New YorkGoogle Scholar
  11. Jonkman NF (1998) Integer ambiguity estimation without the receiver-satellite geometry. Publications of the Delft Geodetic computing centre, LGR-Series, No. 18Google Scholar
  12. Leick A (1995) GPS satellite surveying, 2nd edn. Wiley, New YorkGoogle Scholar
  13. Misra P, Enge P (2001) Global positioning system: signals, measurements, and performance. Ganga-Jamuna PressGoogle Scholar
  14. Moenikes R, Wendel J, Trommer GF (2005) A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints. In: Proceedings ION GNSS2005, Long Beach, CA, USAGoogle Scholar
  15. Parkinson B, Spilker JJ (eds) (1996) GPS: theory and applications. vols 1 and 2, AIAA, Washington DCGoogle Scholar
  16. Peng HM, Chang FR, Wang LS (1999) Attitude determination using GPS carrier phase and compass data. In: Proceedings ION NTM 99, pp 727–732Google Scholar
  17. Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Wellesley-Cambridge PressGoogle Scholar
  18. Svendsen JGG (2005) Some properties of decorrelation techniques in the ambiguity space. GPS Solutions. DOI 10.1007/ s10291-005-0004-6Google Scholar
  19. Teunissen PJG (1993) Least-squares estimation of the integer GPS ambiguities. Invited lecture, Section IV theory and methodology, IAG general meeting, Beijing, China, August 1993. Also in: LGR Series, No. 6, Delft Geodetic computing centreGoogle Scholar
  20. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70:65–82CrossRefGoogle Scholar
  21. Teunissen PJG (1997) On the GPS widelane and its decorrelating property. J Geodesy 71:577–587CrossRefGoogle Scholar
  22. Teunissen PJG (1998) On the integer normal distribution of the GPS ambiguities. Artif Satellites 33(2):49–64Google Scholar
  23. Teunissen PJG (1999a) The probability distribution of the GPS baseline for a class of integer ambiguity estimators. J Geodesy 73:275–284CrossRefGoogle Scholar
  24. Teunissen PJG (1999b) An optimality property of the integer least-squares estimator. J Geodesy 73:587–593CrossRefGoogle Scholar
  25. Teunissen PJG (2000) Adjustment theory. Delft University Press, Delft, The NetherlandsGoogle Scholar
  26. Teunissen PJG (2001) The probability distribution of the ambiguity bootstrapped GNSS baseline. J Geodesy 75:267–275CrossRefGoogle Scholar
  27. Teunissen PJG, Kleusberg A (eds) (1998) GPS for geodesy. 2nd enlarged edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Tiberius CCJM, de Jonge PJ (1995) Fast positioning using the LAMBDA method. In: Proceedings DSNS-95, paper 30, 8 ppGoogle Scholar
  29. Tiberius CCJM, Teunissen PJG, de Jonge PJ (1997) Kinematic GPS: performance and quality control. In: Proceedings KIS97, pp 289–299Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Delft Institute for Earth Observation and Space Systems (DEOS)Delft University of TechnologyDelftThe Netherlands

Personalised recommendations