Skip to main content
Log in

‘DEOS_CHAMP-01C_70’: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Performance of a recently proposed technique for gravity field modeling has been assessed with data from the CHAMP satellite. The modeling technique is a variant of the acceleration approach. It makes use of the satellite accelerations that are derived from the kinematic orbit with the 3-point numerical differentiation scheme. A 322-day data set with 30-s sampling has been used. Based on this, a new gravity field model – DEOS_CHAMP-01C_70 - is derived. The model is complete up to degree and order 70. The geoid height difference between the DEOS_CHAMP-01C_70 and EIGEN-GRACE01S models is 14 cm. This is less than for two other recently published models EIGEN-CHAMP03Sp and ITG-CHAMP01E. Furthermore, we analyze the sensitivity of the model to some empirically determined parameters (regularization parameter and the parameter that controls the frequency-dependent data weighting). We also show that inaccuracies related to non-gravitational accelerations, which are measured by the on-board accelerometer, have a minor influence on the computed gravity field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ditmar P, Klees R, Kostenko F (2003) Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. J Geod 76:690–705

    Article  Google Scholar 

  • Ditmar P, van Eck van~der Sluijs A, Kuznetsov V (2004) Modeling the Earth’s gravity field from precise satellite orbit data: the acceleration approach works! (available as http://earth.esa. int/workshops/goce04/participants/81/paper_accelerations.pdf). In: Proceedings of the 2nd international GOCE user workshop, Frascati (Italy), 8-10 March, 2004. European Space Agency

  • Ditmar P, van Eck van der Sluijs AA (2004) A technique for Earth’s gravity field modeling on the basis of satellite accelerations. J Geod 78:12–33

    Article  Google Scholar 

  • Dziewonski, AM, Anderson DL (1981) Preliminary reference Earth model (PREM). Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Fengler MJ, Freeden W, Michel V (2004) The Kaiserslautern multiscale geopotential model SWITCH-03 from orbit perturbations of the satellite CHAMP and its comparison to the models EGM96, UCPH2002_02_0.5, EIGEN-1s, and EIGEN-2. Geophys J Int 157(2):499–514

    Article  Google Scholar 

  • Gerlach C, Földvary L, Švehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003a) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett 30(20):2037 doi: 10.1029/2003GL018025

    Article  Google Scholar 

  • Gerlach C, Sneeuw N, Visser P, Švehla D (2003b) CHAMP gravity field recovery using the energy balance approach (available as http://www.copernicus.org/EGU/adgeo/2003/1/adg-1-73.pdf). Adv Geosci 1:73–80

    Google Scholar 

  • Han S-C, Jekeli C, Shum CK (2002) Efficient gravity field recovery using in situ disturbing potential observables from CHAMP. Geophys Res Lett 29(16) 10.129/2002GL015180

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bureau Stand 49:409–436

    Google Scholar 

  • Howe E, Stenseng L, Tscherning CC (2003) Analysis of one month of CHAMP state vector and accelerometer data for the recovery of the gravity potential (available as http://www.copernicus.org/EGU/adgeo/2003/1/adg-1-1.pdf). Adv Geosci 1:1–4

    Google Scholar 

  • Ilk K-H (1984) On the analysis of satellite-to-satellite tracking data. In: Proceedings of the International symposium on space techniques for geodesy. Sopron, Hungary 9–13 July 1984, pp 59–74

  • Ilk KH, Feuchtinger M, Mayer-urr T (2003) Gravity field recovery and validation by analysis of short arcs of a satellite-to-satellite tracking experiment as CHAMP and GRACE. In: Proceedings of the IAG symposium G02, IUGG general assembly 2003, Sapporo, Japan

  • Ilk KH, Mayer-Gürr T, Feuchtinger M (2005) Gravity field recovery by analysis of short arcs of CHAMP. In: Reigber C, uhr H, Schwintzer P, Wickert J (eds). Earth observation with CHAMP, results from three years in orbit. Springer, Berlin Heidelberg New York, pp 127–132

  • Lambeck K (1988). Geophysical geodesy: the slow deformations of the Earth. Clarendon, Oxford

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861. NASA GSFC, Greenbelt, MD

  • Mayer-Gurr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: A CHAMP gravitiy field model from short kinematical arcs of a one-year observation period. J Geod 78:462–480

    Article  Google Scholar 

  • McCarthy DD, Petit G (2004) IERS Conventions (2003) (IERS Technical Note; 32). Verlag des Bundesamts f Kartographie und Geodäsie, Frankfurt am Main

  • O’Keefe JA (1957) An application of Jacobi’s integral to the motion of an Earth satellite. The Astronomi J 62(1252):265–266

    Article  Google Scholar 

  • Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA technical memorandum 209478

  • Reigber C (1989) Gravity field recovery from satellite tracking data. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lect notes Earth Sci 25:197–234. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2002) A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14). 10.1029/2002GL015064

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2003a) Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Science Reviews, 108(1-2):55–66

    Article  Google Scholar 

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R., Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2003b) New global gravity field models from selected CHAMP data sets. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic, and atmospheric studies. Springer, Berlin Heidelberg New York, pp 120–127

    Google Scholar 

  • Reigber C, Bock R, Forste C, Grunwaldt L, Jakowski N, Lühr H, Schwintzer P, Tilgner C (1996) CHAMP phase B executive summary. GFZ, STR96/13, Potsdam

  • Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer K-H, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Perosanz F (2005a) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP – results from three years in orbit. Springer, Berlin Heidelberg New York, pp 25–30

    Chapter  Google Scholar 

  • Reigber C, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003c) The CHAMP-only Earth gravity field model EIGEN-2. Adv Space Res 31(8):1883–1888

    Article  Google Scholar 

  • Reigber C, Schwintzer P, Stubenvoll R, Schmidt R, Flechtner F, Meyer U, König R, Neumayer H, Förste C, Barthelmes F, Zhu SY, Balmino G, Biancale R, Lemoine J-M, Meixner H, Raimondo JC (2005b) A high resolution global gravity field model combining CHAMP and GRACE satellite mission and surface gravity data: EIGEN-CG01C. J Geod (accepted)

  • Reubelt T, Austen G, Grafarend EW (2003a) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 77:257–278

    Google Scholar 

  • Reubelt T, Austen G, Grafarend EW (2003b) Space gravity spectroscopy – determination of the Earth’s gravitational field by means of Newton interpolated LEO ephemeris. Case studies on dynamic (CHAMP rapid science orbit) and kinematic orbits (available as http://www.copernicus.org/EGU/adgeo/2003/1/adg-1-127.pdf). Adv Geosci 1:127–135

    Article  Google Scholar 

  • Schrama E (1986) Estimability of potential coefficients from orbit perturbations. In: Reports of the Departmant of Geodesy, Mathematical and Physical Geodesy 86.1. Delft University of Technology

  • Schrama E (1995) Gravity research missions reviewed in light of the indirect ocean tide potential. In: Rapp RH, Nerem RS (eds) In: Proceedings IUGG symposium, Boulder

  • Schuh WD (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteilungen der geodätischen Institute der Technischen Universität Graz. Folge 81. Graz

  • Sneeuw NJ, Gerlach C, Švehla D, Gruber C (2002) A first attempt at time-variable gravity recovery from CHAMP using the energy balance approach (available as http://olimpia.topo.auth.gr/GG2002/SESSION3/Sneeuw.pdf). In: Proceedings of the 3rd meeting of the international gravity and geoid commission. Thessaloniki, Greece, 26–30 August

  • Standish EM (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312.F-98-048

  • Teunissen PJG (2000) Testing theory: an introduction. Delft University Press, Delft

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. V.H. Winston and Sons, Washington

    Google Scholar 

  • van den IJssel J, Visser P, Rodriguez EP (2003) CHAMP precise orbit determination using GPS data. Adv Space Res 31:1889–1895

    Article  Google Scholar 

  • Švehla D, Rothacher M (2003) Kinematic precise orbit determination for gravity field determination (available as http://tau.fesg.tu-muenchen.de/~drazen/IUGG03_Svehla.pdf). In: Proceedings of the IUGG General Assembly, Sapporo, Japan, 30 June – 11 July, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ditmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditmar, P., Kuznetsov, V., van der Sluijs, A.A.v. et al. ‘DEOS_CHAMP-01C_70’: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite. J Geodesy 79, 586–601 (2006). https://doi.org/10.1007/s00190-005-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-005-0008-6

Keywords

Navigation