Validation of the D&M IS success model in the context of accounting information system of the banking sector in the least developed countries

Abstract

This study aims to validate D&M IS success model (for the first time) in the context of accounting information system (AIS) of the banking sector in the least developed countries, in this case Yemen. A self-administrated questionnaire was used to collect data from AIS users in seven Yemeni commercial banks. Structural equation modeling via PLS was used to validate the model’s constructs. Out of twelve relationships tested, seven were positively and significantly related as predicted. The results reveal that system usage is predicted by information quality, system quality, and user satisfaction, while user satisfaction with AIS is predicted by information quality only. Further, system usage positively affects AIS net benefits. However, system quality and service quality are not a predictor of user satisfaction with AIS and also, service quality does not influence system usage. Finally, AIS net benefits are not predicted by user satisfaction with AIS. In conclusion, the study has validated the model in the context of AIS of the banking sector in Yemen, a least developed country. This research offers a relevant guide on the importance of AIS success among banks. Finally, the implications of this study, limitations, and further research were discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Afthanorhan, W. M. A. B. W. (2013). A comparison of partial least square structural equation modeling (PLS-SEM) and covariance based structural equation modeling (CB-SEM) for confirmatory factor analysis. International Journal of Engineering Science and Innovative Technology, 2(5), 198–205.

    Google Scholar 

  2. Al-adaileh, M. R. (2009). An evaluation of information systems success: A user perspective—The case of Jordan Telecom Group. European Journal of Scientific Research, 37(2), 226–239.

    Google Scholar 

  3. Al-Debei, M. M., Jalal, D., & Al-Lozi, E. (2013). Measuring web portals success: A respecification and validation of the DeLone and McLean information systems success model. International Journal of Business Information Systems, 14(1), 96–133.

    Article  Google Scholar 

  4. Al-Fraihat, D., Joy, M., & Sinclair, J. (2019). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67–86. https://doi.org/10.1016/j.chb.2019.08.004.

    Article  Google Scholar 

  5. Al-Frijat, Y. S. (2014). The impact of accounting information systems used in the income tax department on the effectiveness of tax audit and collection in Jordan. Journal of Emerging Trends in Economics and Management Sciences, 5(1), 19–25.

    Google Scholar 

  6. Al-Hattami, H. M., & Kabra, J. D. (2019). The role of accounting information system (AIS) in rationalizing human resource related decisions: A case study of selected commercial banks in Yemen. International Journal of Management Studies, 6(2), 84–91. https://doi.org/10.18843/ijms/v6si2/12.

    Article  Google Scholar 

  7. Al-Mamary, Y. H., Shamsuddin, A., Hamid, A., & Aziati, N. (2014). The relationship between system quality, information quality, and organizational performance. International Journal of Knowledge and Research in Management & E-Commerce4(3), 7–10. http://eprints.uthm.edu.my/id/eprint/8441/.

  8. Aldholay, A. H., Isaac, O., Abdullah, Z., & Ramayah, T. (2018). The role of transformational leadership as a mediating variable in DeLone and McLean information system success model: The context of online learning usage in Yemen. Telematics and Informatics, 35(5), 1421–1437.

    Article  Google Scholar 

  9. Alzahrani, A. I., Mahmud, I., Ramayah, T., Alfarraj, O., & Alalwan, N. (2019). Modelling digital library success using the DeLone and McLean information system success model. Journal of Librarianship and Information Science, 51(2), 291–306.

    Article  Google Scholar 

  10. Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.

    Article  Google Scholar 

  11. Andoh-Baidoo, F. K., Villarreal, M. A., Liu, L. C., & Wuddah-Martey, P. (2010). An exploratory study to examine the success of electronic banking systems implementation in a developing nation. International Journal of Electronic Finance, 4(3), 221–235.

    Article  Google Scholar 

  12. Aparicio, M., Oliveira, T., Bacao, F., & Painho, M. (2019). Gamification: A key determinant of massive open online course (MOOC) success. Information & Management, 56(1), 39–54.

    Article  Google Scholar 

  13. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.

    Article  Google Scholar 

  14. Baroudi, J. J., Olson, M. H., & Ives, B. (1986). An empirical study of the impact of user involvement on system usage and information satisfaction. Communications of the ACM, 29(3), 232–238.

    Article  Google Scholar 

  15. Bharati, P., & Berg, D. (2003). Managing information systems for service quality: A study from the other side. Information Technology & People, 16(2), 183–202. https://doi.org/10.1108/09593840310478685.

    Article  Google Scholar 

  16. Bhatti, Z. A., Baile, S., & Yasin, H. M. (2018). Assessing enterprise wiki success from the perspective of end-users: An empirical approach. Behaviour & Information Technology, 37(12), 1177–1193.

    Article  Google Scholar 

  17. Bikson, T. K., & Gutek, B. A. (1983). Advanced office systems: An empirical look at use and satisfaction. In Proceedings of the May 16–19, 1983, national computer conference, May 1983 (pp. 319–328). ACM.

  18. Bokhari, R. H. (2005). The relationship between system usage and user satisfaction: A meta-analysis. Journal of Enterprise Information Management, 18(2), 211–234.

    Article  Google Scholar 

  19. Boockholdt, J. L. (1996). Accounting information systems. Singapore: McGraw-Hill Professional.

    Google Scholar 

  20. Brown, I., & Jayakody, R. (2008). B2C e-commerce success: A test and validation of a revised conceptual model. The Electronic Journal Information Systems Evaluation, 11(3), 167–184.

    Google Scholar 

  21. CBY. (2015). Annual report 2015, Central Bank of Yemen. Retrieved from http://centralbank.gov.ye/.

  22. Cham, T. H., Lim, Y. M., Cheng, B. L., & Lee, T. H. (2016). Determinants of knowledge management systems success in the banking industry. VINE Journal of Information and Knowledge Management Systems, 46(1), 2–20.

    Article  Google Scholar 

  23. Chen, C. W. D., & Cheng, C. Y. J. (2009). Understanding consumer intention in online shopping: A respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 28(4), 335–345.

    Article  Google Scholar 

  24. Chin, W. W., Thatcher, J. B., & Wright, R. T. (2012). Assessing common method bias: Problems with the ULMC technique. MIS Quarterly, 36(3), 1003–1019.

    Article  Google Scholar 

  25. Chong, S. (2008). Success in electronic commerce implementation: A cross-country study of small and medium-sized enterprises. Journal of Enterprise Information Management, 21(5), 468–492.

    Article  Google Scholar 

  26. Cidral, W. A., Oliveira, T., Di Felice, M., & Aparicio, M. (2018). E-learning success determinants: Brazilian empirical study. Computers & Education, 122(July), 273–290.

    Article  Google Scholar 

  27. Cinquini, L., & Mitchell, F. (2005). Success in management accounting: Lessons from the activity-based costing/management experience. Journal of Accounting and Organizational Change, 1(1), 63–77.

    Article  Google Scholar 

  28. Clemons, E. K., Reddy, S. P., & Row, M. C. (1993). The impact of information technology on the organization of economic activity: The “move to the middle” hypothesis. Journal of Management Information Systems, 10(2), 9–35.

    Article  Google Scholar 

  29. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Routledge.

    Google Scholar 

  30. Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis. Hillsdale: Erlbaum.

    Google Scholar 

  31. Dang, M. Y., Zhang, G. Y., & Chen, H. (2018). Adoption of social media search systems: An IS success model perspective. Pacific Asia Journal of the Association for Information Systems, 10(2), 55–77. http://aisel.aisnet.org/pajais/vol10/iss2/4.

  32. Das, S. (1989). An overview of accounting as an information system. In Systems prospects (pp. 29–34). Boston: Springer. https://doi.org/10.1007/978-1-4613-0845-4_6.

  33. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    Article  Google Scholar 

  34. DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60–95.

    Article  Google Scholar 

  35. Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30.

    Article  Google Scholar 

  36. Delone, W. H., & Mclean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31–47.

    Article  Google Scholar 

  37. DeLone, W. H., & McLean, E. R. (2016). Information systems success measurement. Foundations and Trends® in Information Systems, 2(1), 1–116.

    Article  Google Scholar 

  38. Etim, E. O. (2011). Enhancing the efficiency of accounting information system in organizations. International Journal of Economic Development Research and Investment, 2(2), 19–27.

    Google Scholar 

  39. Fadhel, I. E. I., Bin Syed Idrus, S. Z., Ibrahim, A. A. E. A., Omar, M., Baheshwan, F., Albzeirat, M. K., & Albzeirat, S. K. (2018). Measuring system success in new context by adapting DM 2003 framework with the external factor management support. In Journal of Physics: Conference Series, June 2018 (vol. 1019, no. 1, p. 012003). IOP Publishing.

  40. Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.

  41. Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H., & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecological Processes, 5(19), 1–12. https://doi.org/10.1186/s13717-016-0063-3.

    Article  Google Scholar 

  42. Floropoulos, J., Spathis, C., Halvatzis, D., & Tsipouridou, M. (2010). Measuring the success of the Greek taxation information system. International Journal of Information Management, 30(1), 47–56.

    Article  Google Scholar 

  43. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

    Article  Google Scholar 

  44. Gackstatter, T., Müller-Stewens, B., & Möller, K. (2019). Effective accounting processes: The role of formal and informal controls. Journal of Management Control, 30(2), 131–152.

    Article  Google Scholar 

  45. Ghobakhloo, M., & Tang, S. H. (2015). Information system success among manufacturing SMEs: Case of developing countries. Information Technology for Development, 21(4), 573–600.

    Article  Google Scholar 

  46. Gorla, N., Somers, T. M., & Wong, B. (2010). Organizational impact of system quality, information quality, and service quality. The Journal of Strategic Information Systems, 19(3), 207–228.

    Article  Google Scholar 

  47. Hair, J. F., Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th ed.). New Jersey: Pearson Education Inc.

    Google Scholar 

  48. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152.

    Article  Google Scholar 

  49. Halawi, L. A., McCarthy, R. V., & Aronson, J. E. (2008). An empirical investigation of knowledge management systems’ success. Journal of Computer Information Systems, 48(2), 121–135.

    Google Scholar 

  50. Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959–10966.

    Article  Google Scholar 

  51. Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20.

    Article  Google Scholar 

  52. Himang, M. M., Mendoza, E., Jr., Manalastas, R., Ocampo, L., & Himang, C. M. (2019). Modeling the success of windows domain network (WDN) using the DeLone and McLean information system (IS) success model: A university case. International Journal of Sociotechnology and Knowledge Development (IJSKD), 11(3), 30–55.

    Article  Google Scholar 

  53. Holsapple, C. W., & Lee-Post, A. (2006). Defining, assessing, and promoting e-learning success: An information systems perspective. Decision Sciences Journal of Innovative Education, 4(1), 67–85.

    Article  Google Scholar 

  54. Hou, C. K. (2012). Examining the effect of user satisfaction on system usage and individual performance with business intelligence systems: An empirical study of Taiwan’s electronics industry. International Journal of Information Management, 32(6), 560–573.

    Article  Google Scholar 

  55. Hu, P. H. (2003). Evaluating telemedicine systems success: A revised model. In Proceedings of the 36th annual Hawaii international conference on system sciences, January 2003 (p. 8). IEEE.

  56. Hussein, S. (2017). Towards a conceptual framework for investigating information systems success: The case of Egyptian banks. International Journal of Customer Relationship Marketing and Management (IJCRMM), 8(3), 31–53.

    Article  Google Scholar 

  57. Iivari, J. (2005). An empirical test of the DeLone-McLean model of information system success. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 36(2), 8–27.

    Article  Google Scholar 

  58. Ishman, M. D. (1996). Measuring information success at the individual level in cross-cultural environments. Information Resources Management Journal (IRMJ), 9(4), 16–28.

    Article  Google Scholar 

  59. Jennex, M., & Olfman, L. (2003). A knowledge management success model: An extension of Delone and Mclean's is success model. In AMCIS 2003 Proceedings (vol. 330, pp. 2529–2539). Retrieved from http://aisel.aisnet.org/amcis2003/330.

  60. Kelloway, E. K. (1998). Using LISREL for structural equation modeling: A researcher’s guide. Thousand Oaks: Sage.

    Google Scholar 

  61. Khayun, V., Ractham, P., & Firpo, D. (2012). Assessing e-excise sucess with Delone and Mclean’s model. Journal of Computer Information Systems, 52(3), 31–40.

    Google Scholar 

  62. Klovienė, L., & Gimzauskiene, E. (2015). The effect of information technology on accounting system’s conformity with business environment: A case study in banking sector company. Procedia Economics and Finance, 32, 1707–1712. https://doi.org/10.1016/S2212-5671(15)01476-8.

    Article  Google Scholar 

  63. Knauer, T., Nikiforow, N., & Wagener, S. (2020). Determinants of information system quality and data quality in management accounting. Journal of Management Control, 31, 97–121. https://doi.org/10.1007/s00187-020-00296-y.

    Article  Google Scholar 

  64. Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (ijec), 11(4), 1–10.

    Article  Google Scholar 

  65. Konradt, U., Nerdinger, F. W., & Ellwart, T. (2016). A model for usability in e-commerce services: Theoretical concept and empirical evidence. In Encyclopedia of e-commerce development, implementation, and management (pp. 2332–2343). IGI Global.

  66. Lee, S. K., & Yu, J. H. (2012). Success model of project management information system in construction. Automation in Construction, 25, 82–93. https://doi.org/10.1016/j.autcon.2012.04.015.

    Article  Google Scholar 

  67. Lin, F., Sheng, O. R., & Wu, S. (2005). An integrated framework for eChain bank accounting systems. Industrial Management & Data Systems, 105(3), 291–306.

    Article  Google Scholar 

  68. Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information & Management, 38(1), 23–33.

    Article  Google Scholar 

  69. Machado-Da-Silva, F. N., Meirelles, F. D. S., & Filenga, D. (2014). Student satisfaction process in virtual learning system: Considerations based in information and service quality from Brazil’s experience. Turkish Online Journal of Distance Education, 15(3), 122–142.

    Article  Google Scholar 

  70. Manandhar, S. P., Kim, S., & Hwang, J. (2015). Success factors of online services in Kathmandu, Nepal: An empirical analysis. International Journal of Business Information Systems, 18(4), 422–436.

    Article  Google Scholar 

  71. Marjanovic, U., Simeunovic, N., Delic, M., Bojanic, Z., & Lalic, B. (2018). Assessing the success of university social networking sites: Engineering students’ perspective. The International Journal of Engineering Education, 34(4), 1363–1375.

    Google Scholar 

  72. Mawhinney, C. H. (1990). A study of computer use by knowledge workers: User satisfaction versus system use. In Proceedings Annual Meeting of Decisions Sciences Institute. San Diego, CA, November 1990 (pp. 954–956).

  73. May, J., Dhillon, G., & Caldeira, M. (2013). Defining value-based objectives for ERP systems planning. Decision Support Systems, 55(1), 98–109.

    Article  Google Scholar 

  74. Molla, A., & Licker, P. S. (2001). E-commerce systems success: An attempt to extend and respecify the Delone and MacLean model of IS success. Journal of Electronic Commerce Research, 2(4), 131–141.

    Google Scholar 

  75. Moscove, S. A., & Simkin, M. G. (1984). Accounting information systems. New York: Wiley.

    Google Scholar 

  76. Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199–235.

    Article  Google Scholar 

  77. Nicolaou, A. I. (2000). A contingency model of perceived effectiveness in accounting information systems: Organizational coordination and control effects. International Journal of Accounting Information Systems, 1(2), 91–105.

    Article  Google Scholar 

  78. Nitzl, C., & Chin, W. W. (2017). The case of partial least squares (PLS) path modeling in managerial accounting research. Journal of Management Control, 28(2), 137–156.

    Article  Google Scholar 

  79. O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6.

    Article  Google Scholar 

  80. Ojo, A. I. (2017). Validation of the DeLone and McLean information systems success model. Healthcare Informatics Research, 23(1), 60–66. https://doi.org/10.4258/hir.2017.23.1.60.

    Article  Google Scholar 

  81. Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236–263.

    Article  Google Scholar 

  82. Petter, S., DeLone, W., & McLean, E. R. (2013). Information systems success: The quest for the independent variables. Journal of Management Information Systems, 29(4), 7–62.

    Article  Google Scholar 

  83. Pierre, A. K., Khalil, G., Marwan, K., Nivine, G., & Tarek, A. (2013). The tendency for using Accounting Information Systems in Lebanese firms. International Journal of Computer Theory and Engineering, 5(6), 895–899. https://doi.org/10.7763/IJCTE.2013.V5.818.

    Article  Google Scholar 

  84. Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS Quarterly, 19(2), 173–187.

    Article  Google Scholar 

  85. Prybutok, V. R., Zhang, X., & Ryan, S. D. (2008). Evaluating leadership, IT quality, and net benefits in an e-government environment. Information & Management, 45(3), 143–152.

    Article  Google Scholar 

  86. Rahi, S. (2017). Research design and methods: A systematic review of research paradigms, sampling issues and instruments development. International Journal of Economics & Management Sciences, 6(2), 1–5.

    Article  Google Scholar 

  87. Ramayah, T., Ahmad, N. H., & Lo, M. C. (2010). The role of quality factors in intention to continue using an e-learning system in Malaysia. Procedia-Social and Behavioral Sciences, 2(2), 5422–5426. https://doi.org/10.1016/j.sbspro.2010.03.885.

    Article  Google Scholar 

  88. Rana, N. P., Dwivedi, Y. K., Williams, M. D., & Weerakkody, V. (2015). Investigating success of an e-government initiative: Validation of an integrated IS success model. Information Systems Frontiers, 17(1), 127–142.

    Article  Google Scholar 

  89. Raymond, L., & Bergeron, F. (2008). Project management information systems: An empirical study of their impact on project managers and project success. International Journal of Project Management, 26(2), 213–220.

    Article  Google Scholar 

  90. Roky, H., & Al Meriouh, Y. (2015). Evaluation by users of an industrial information system (XPPS) based on the DeLone and McLean model for IS success. Procedia Economics and Finance, 26, 903–913. https://doi.org/10.1016/S2212-5671(15)00903-X.

    Article  Google Scholar 

  91. Rouibah, K., Hamdy, H. I., & Al-Enezi, M. Z. (2009). Effect of management support, training, and user involvement on system usage and satisfaction in Kuwait. Industrial Management & Data Systems, 109(3), 338–356.

    Article  Google Scholar 

  92. Ruggeri, D., & Rizza, C. (2017). Accounting information system innovation in interfirm relationships. Journal of Management Control, 28(2), 203–225.

    Article  Google Scholar 

  93. Saarinen, T. (1996). An expanded instrument for evaluating information system success. Information & Management, 31(2), 103–118.

    Article  Google Scholar 

  94. Salameh, A. A. M., Ahmad, H., Zulhumadi, F., & Abubakar, F. M. (2018). Relationships between system quality, service quality, and customer satisfaction. Journal of Systems and Information Technology, 20(1), 73–102.

    Article  Google Scholar 

  95. Scott, M., DeLone, W. H., & Golden, W. (2009). Understanding net benefits: A citizen-based perspective on e-government success. In ICIS 2009 Proceedings (Paper 86, pp. 1–11). Retrieved from http://aisel.aisnet.org/icis2009/86.

  96. Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240–253.

    Article  Google Scholar 

  97. Sekyere, A. M., Amoateng, A. K., & Frimpong, K. (2017). The determinants of computerized accounting system on accurate financial report in listed banks on the Ghana Stock Exchange. Journal of Finance and Accounting, 6(4), 104–110. https://doi.org/10.5923/j.ijfa.20170604.02.

    Article  Google Scholar 

  98. Sepahvand, R., & Arefnezhad, M. (2013). Prioritization of factors affecting the success of information systems with AHP (A case study of industries and mines organization of Isfahan province). International Journal of Applied Operational Research, 3(3), 67–77.

    Google Scholar 

  99. Sharma, S. K., & Sharma, M. (2019). Examining the role of trust and quality dimensions in the actual usage of mobile banking services: An empirical investigation. International Journal of Information Management, 44, 65–75. https://doi.org/10.1016/j.ijinfomgt.2018.09.013.

    Article  Google Scholar 

  100. Shuhidan, S. M., & Nori, W. M. N. W. M. (2015). Accounting information system and decision useful information fit towards cost conscious strategy in Malaysian higher education institutions. Procedia Economics and Finance, 31, 885–895. https://doi.org/10.1016/S2212-5671(15)01186-7.

    Article  Google Scholar 

  101. Sori, Z. M. (2009). Accounting information systems (AIS) and knowledge management: A case study. American Journal of Scientific Research, 4(4), 36–44.

    Google Scholar 

  102. Sørum, H., Medaglia, R., Andersen, K. N., Scott, M., & DeLone, W. (2012). Perceptions of information system success in the public sector: Webmasters at the steering wheel? Transforming Government: People, Process and Policy, 6(3), 239–257.

    Article  Google Scholar 

  103. Srinivasan, A. (1985). Alternative measures of system effectiveness: Associations and implications. MIS Quarterly, 9(3), 243–253.

    Article  Google Scholar 

  104. Stefanovic, D., Marjanovic, U., Delić, M., Culibrk, D., & Lalic, B. (2016). Assessing the success of e-government systems: An employee perspective. Information & Management, 53(6), 717–726.

    Article  Google Scholar 

  105. Sufian, F., & Kamarudin, F. (2016). Determinants of efficiency in the Malaysian banking sector: Does bank origins matter? Intellectual Economics, 10(1), 38–54.

    Article  Google Scholar 

  106. Syahidi, A. A., & Asyikin, A. N. (2018). Strategic planning and implementation of academic information system (AIS) based on website with D&M model approach. In IOP Conference Series: Materials Science and Engineering, August 2018 (vol. 407, no. 1, p. 012101). IOP Publishing.

  107. Tam, C., & Oliveira, T. (2016). Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective. Computers in Human Behavior, 61(August), 233–244.

    Article  Google Scholar 

  108. Tam, C., & Oliveira, T. (2017). Understanding mobile banking individual performance: The DeLone & McLean model and the moderating effects of individual culture. Internet Research, 27(3), 538–562.

    Article  Google Scholar 

  109. Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.

    Article  Google Scholar 

  110. Thong, J. Y., Yap, C. S., & Raman, K. S. (1996). Top management support, external expertise and information systems implementation in small businesses. Information Systems Research, 7(2), 248–267.

    Article  Google Scholar 

  111. Trigo, A., Belfo, F., & Estébanez, R. P. (2014). Accounting information systems: The challenge of the real-time reporting. Procedia Technology, 16, 118–127. https://doi.org/10.1016/j.protcy.2014.10.075.

    Article  Google Scholar 

  112. UNCTAD. (2017). The least developed countries report 2017, United Nations Publication.

  113. Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology Theory and Application, 11(2), 5–40.

    Google Scholar 

  114. Urbach, N., Smolnik, S., & Riempp, G. (2010). An empirical investigation of employee portal success. The Journal of Strategic Information Systems, 19(3), 184–206.

    Article  Google Scholar 

  115. Veeramootoo, N., Nunkoo, R., & Dwivedi, Y. K. (2018). What determines success of an e-government service? Validation of an integrative model of e-filing continuance usage. Government Information Quarterly, 35(2), 161–174.

    Article  Google Scholar 

  116. Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In Handbook of partial least squares (pp. 47–82). Berlin: Springer.

  117. Wang, M. H., & Yang, T. Y. (2016). Investigating the success of knowledge management: An empirical study of small-and medium-sized enterprises. Asia Pacific Management Review, 21(2), 79–91.

    Article  Google Scholar 

  118. Wang, Y. S. (2008). Assessing e-commerce systems success: A respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529–557.

    Article  Google Scholar 

  119. Wang, Y. S., & Liao, Y. W. (2008). Assessing eGovernment systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717–733.

    Article  Google Scholar 

  120. Wetzels, M., Odekerken-Schröder, G., & Van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177–195.

    Article  Google Scholar 

  121. Wu, J. H., & Wang, Y. M. (2006). Measuring KMS success: A respecification of the DeLone and McLean’s model. Information & Management, 43(6), 728–739.

    Article  Google Scholar 

  122. Xu, H. (2015). What are the most important factors for accounting information quality and their impact on AIS data quality outcomes? Journal of Data and Information Quality (JDIQ), 5(4), 1–22.

    Article  Google Scholar 

  123. Xu, H., Nord, J. H., Nord, G. D., & Lin, B. (2003). Key issues of accounting information quality management: Australian case studies. Industrial Management & Data Systems, 103(7), 461–470. https://doi.org/10.1108/02635570310489160.

    Article  Google Scholar 

  124. Xu, J., Benbasat, I., & Cenfetelli, R. T. (2013). Integrating service quality with system and information quality: An empirical test in the e-service context. MIS Quarterly, 37(3), 777–794.

    Article  Google Scholar 

  125. Yahya, A. T., Akhtar, A., & Tabash, M. I. (2017). The impact of political instability, macroeconomic and bank-specific factors on the profitability of Islamic banks: An empirical evidence. Investment Management and Financial Innovations, 14(4), 30–39. https://doi.org/10.21511/imfi.14(4).2017.04.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamood Mohd. Al-Hattami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Constructs and indicators used to measure and assess AIS success

Constructs Indicator and item Source
Information quality (IQ) IQ1—(Relevance): The information provided by AIS is relevant to my work
IQ2—(Accuracy): The information provided by AIS is accurate and consistent
IQ3—(Timeliness): The information provided by AIS is up to date and available when needed
IQ4—(Completeness): The information provided by AIS is complete
Ramayah et al. (2010)
System quality (SyQ) SyQ1—(Reliability): AIS is dependable
SyQ2—(Flexibility): AIS is flexible; it can accommodate changes and amendments smoothly without interrupting my work
SyQ3—(Ease of use): AIS is not complicated; it is easy to use
SyQ4—(Accessibility): AIS and the information it contains can be accessed with relatively low effort
Prybutok et al. (2008)
Service quality (SerQ) SerQ1—(Responsiveness): AIS gives prompt service to users
SerQ2—(Assurance): AIS staff have enough knowledge and expertise in AIS
SerQ3—(Service reliability): AIS provides dependable and accurate services
SerQ4—(Empathy): AIS service provider provides care and individualized attention to users/customers
Gorla et al. (2010) and Urbach et al. (2010)
User satisfaction (UF) UF1—(Support): Satisfaction regarding support of my work of AIS
UF2—(Meet expectations): AIS meets my expectations
UF3—(Overall satisfaction): overall, I am satisfied with AIS
Floropoulos et al. (2010)
System usage (SyU) SyU1—(Frequency of use): AIS is used frequently
SyU2—(Dependency): You are dependent on the AIS
Wang and Liao (2008)
Net benefits (NB) NB1—(Usefulness): AIS enhances my job performance
NB2—(Time and cost saving): AIS saves me time and cost
Scott et al. (2009)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Hattami, H.M. Validation of the D&M IS success model in the context of accounting information system of the banking sector in the least developed countries. J Manag Control (2021). https://doi.org/10.1007/s00187-020-00310-3

Download citation

Keywords

  • Accounting information system
  • AIS success
  • D&M IS success model
  • Commercial banks
  • Yemen