Skip to main content
Log in

Identifying, analyzing, and assessing risk in the strategic planning of a production network: the practical view of a German car manufacturer

  • Original Paper
  • Published:
Journal of Management Control Aims and scope Submit manuscript

Abstract

This paper addresses the issue of identifying and assessing risk relevant to production networks. The objective is to create a systematic, comprehensive record of the risks relevant to the planning of car manufacturer’s production networks and to analyze these risks. The paper also discusses the methodology for assessing relevant risk in terms of the probability that the risk will materialize and the scale of the potential loss. A further objective is to assess the options for mitigating the risk through the use of a flexibly structured production network and to evaluate the associated options for responding to a change in market conditions. A case study demonstrates the possible impact of the main risk factors on performance if the organization concerned does not build flexibility into the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Sources included Ernst and Young Global Business Risk Report 2010 (Ernst&Young 2011), risk checklists (Romeike 2012; Denk and Exner-Merkelt 2005, p. 84; Ziegenbein 2007, pp. 185 et seq.), and internal sources.

  2. Baumann et al. (2006) recommend between eight and ten participants, Romeike and Hager (2009) between five and seven.

  3. This may occur in connection with the construction of a new facility, or in connection with the extension, conversion, or modification of an existing site.

  4. This may involve an increase in existing local content requirements, the introduction of new local content requirements, modifications to the prescribed methods for determining the level of local content, and/or the creation of free trade areas.

  5. The ROWEU market comprises Austria, Belgium, Denmark, Finland, France, Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.

  6. These expert employees had already been interviewed as part of the risk identification process (see Sect. 4).

  7. All eight participants are directly involved in planning the production network that forms the basis for the example production network.

  8. In the calculation of the figure for the logistics costs risk, the high oil price scenario determined by the IEA is used in place of a probability figure of 5 %.

  9. See Appendix A.

  10. For the purposes of this paper, the passenger car models are aggregated into one model (type 1).

  11. Analysis of historical demand forecasts shows that a sales market was either overestimated or underestimated over the entire forecast period in over 95 % of instances.

  12. The currencies covered in this paper are those of the relevant markets: US dollar (USD), Chinese yuan (CNY), Brazilian real (BRL), Indian rupee (INR), and Russian ruble (RUB).

  13. The tools used for the purposes of this paper are programs for analyzing risk optimization produced by the Palisade Corporation. The @Risk program is based on Monte Carlo simulations for risk optimization. In addition to @Risk, this study has also used the StatTools software, in particular to analyze time series.

  14. In the case of the EUR/RUB and EUR/BRL exchange rates, the variance from the forecasted trend is determined using a Monte Carlo simulation.

  15. The fixed portion of the freight costs increases on average by approximately 3 % per year; this increase is contractually agreed.

  16. Brent Crude price.

  17. This study only considers one vehicle type, although the type has different market-specific features, for example to meet the varying safety requirements and exhaust emission standards.

  18. Only one vehicle model was considered in the context of the work on this paper. If several models are taken into account and a possible shift in demand treated as a risk factor, a flexible production network structure could be expected to deliver significantly greater benefits.

References

  • Abele, E., Kluge, J., & Näher, U. (2006). Handbuch globale produktion. Munich: Hanser-Verlag.

    Google Scholar 

  • Audi, A. G. (2012). Annual report 2011. Ingolstadt: Audi AG.

    Google Scholar 

  • Barrot, C. (2007). Prognosegütemasse. In S. Albers, D. Klapper, U. Konradt, A. Walter, & J. Wolf (Eds.), Methodik der empirischen Forschung (2nd ed.). Wiesbaden: Gabler-Verlag.

    Google Scholar 

  • Baumann, R., Döhler, C., Hallek, J., & Witergerste, T. (2006). Implementierung des enterprise-risk-managements. In O. Gassmann & C. Kobe (Eds.), Management von innovation und risiko (2nd ed.). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Bhutta, K. S., Huq, F., Frazier, G., & Mohamed, Z. (2003). An integrated location, production, distribution and investment model for a multinational corporation. International Journal of Production Economics, 86(3), 201–216.

    Article  Google Scholar 

  • Bihlmaier, R., & Koberstein, A. (2009). Modeling and optimizing of strategic and tactical production planning in the automotive industry under uncertainty. Operations Research Spectrum, 31, 311–336.

    Article  Google Scholar 

  • Bmw, A. G. (2012). Annual report 2011. Munich: BMW AG.

    Google Scholar 

  • Bretzke, W., & Barkawi, K. (2010). Nachhaltige Logistik: Antworten auf eine globale Herausforderung. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Butler, R. J., Ammons, J. C., & Sokol, J. (2003). A robust optimization model for strategic production and distribution planning for a new product. Florida: Georgia Institute of Technology: University of Central Florida.

    Google Scholar 

  • Committee of Sponsoring Organizations of the Treadway Comission (COSO). ’Unternehmensweites Risikomanagement - Übergreifendes Rahmenwerk’, http://www.coso.org/documents/COSO_ERM_ExecutiveSummary.pdf. Accessed 20 March 2012

  • Chung, D. B., Tao, Y., Xie, C., & Thorsen, A. (2011). A robust optimization model for a dynamic network design problem under demand uncertainty. Networks and Spatial Economics, 2(11), 371–389.

    Article  Google Scholar 

  • Daimler, A. G. (2012). Annual report 2011. Stuttgart: Daimler AG.

    Google Scholar 

  • Denk, R., & Exner-Merkelt, K. (2005). Corporate Risk Management. Unternehmensweites Risikomanagement als Führungsaufgabe. Vienna: Linde-Verlag.

    Google Scholar 

  • Dornbusch, R. (1976). Expectations and Exchange Rate Dynamics. Journal of Political Economy, 84(6), 1161–1176.

    Article  Google Scholar 

  • Ernst &Young. (2011). The Ernst &Young business risk report 2010. The top 10 risks for business: a sector-wide view of the risks facing business across the globe. Brazil: Ernst & Young.

  • Ferber, S. (2005). Strategische kapazitäts- und investitionsplanung in der globalen supply chain eines automobilherstellers. Aachen: Shaker Verlag.

    Google Scholar 

  • Fliege, S. (2006). Risikomanagement- und Überwachungssystem nach KonTraG. Prozess, Instrumente, Träger. Wiesbaden: Gabler-Verlag.

    Google Scholar 

  • Fisch, H. F., & Zschote, M. (2011). Analyse von Produktionsnetzwerken mit dem Konzept der Operationalen Flexibilität. In J. F. Puck & C. Leitl (Eds.), Aussenhandel im Wandel (pp. 239–259). Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design by benders decomposition. Management Science, 20(5), 822–844.

    Article  Google Scholar 

  • Goetschalckx, M. & Fleischmann, B. (2005). Strategic network design. In H. Stadtler, C. Kilger (Eds.) Supply chain management and advanced planning. Concepts, models, software and case studies, (4th edn, pp 117–132), Berlin: Springer-Verlag.

  • Goetschalckx, M., & Vidal, C. (2000). Managing the effect of uncertainties on global logistic systems. Journal of Business Logistics, 21(1), 95–120.

    Google Scholar 

  • Gudehus, T. (2010). Logistik. Grundlagen-Strategien Anwendungen (4th ed.). Berlin: Springer Verlag.

    Google Scholar 

  • Harland, C., Brenchley, R., & Walker, H. (2003). Risk in supply networks. Journal of Purchasing and Supply Management, 2(9), 51–62.

    Article  Google Scholar 

  • Hasenmueller, P. (2009). Unternehmensrisiko Klimawandel. Wiesbaden: Gabler-Verlag.

    Book  Google Scholar 

  • Henrich, T. (2002). Strategische Gestaltung von Produktionssystemen in der Automobilindustrie. Berlin: Shaker Verlag.

    Google Scholar 

  • Herrmann, F. (2011). Operative Planung in IT-Systemen für die Produktionsplanung und -steuerung. Berlin: Wirkung, Auswahl und Einstellhinweise Wiesbaden: Springer-Verlag.

    Book  Google Scholar 

  • Hodder, J. E., & Jucker, J. V. (1985). A simple plant-location model for quantity-settings firms to price uncertainty. European Journal of Operational Research, 1985(21), 39–46.

    Article  Google Scholar 

  • Hollmann, D. (2011). Supply chain network design under uncertainty and risk. London: Dissertation, Brunel University London.

    Google Scholar 

  • Huchzermeier, A., & Cohen, M. A. (1996). Valuing operational flexibility under exchange rate risk. Operations Research, 1(44), 100–113.

    Article  Google Scholar 

  • International Energy Agency (IEA). (2011). World Energy Outlook 2011 with projections to 2035. USA: US Energy Information Administration.

  • IHS Global Insight. (2011). Market Forecasts, http://informationresearch06.e.corpintra.net/zoro/tunnel/IHSAUTO/servlet/cats?filterID=23131andserviceID=1675andtypeID=15305andpageContent=report. Accessed on 12 Dec 2011

  • Jordan, W. C., & Graves, P. C. (1995). Principles of the benefits of manufacturing process flexibility. Management Science, 4(41), 577–594.

    Article  Google Scholar 

  • Jorion, P. (2007). Value at risk. The new benchmark for managing financial risk. New York: McGraw-Hill Companies.

    Google Scholar 

  • Kauder, S. (2008). Strategische Planung internationaler Produktionsnetzwerke in der Automobilindustrie. Vienna: Dissertation, Vienna University of Economics and Business Administration.

    Google Scholar 

  • Koberstein, A., Lukas, E., Naumann, M. (2012) Integrated strategic planning of global production networks and financial hedging under uncertain demand and exchange rates. Working Paper.

  • Kouvelis, P., Dong, L., Boyabatli, O., & Li, R. (2012) Integrated risk management: a conceptual framework with research overview and applications in practice. In P. Kouvelis, L. Dong, O. Boyabatli, R. Li (Eds.), Handbook of integrated risk management in global supply chains, (pp 3–12). Wiley, New Jersey.

  • Legner, C., Pelli, D., & Löhe, J. (2009). Wandel in den Wertschöpfungsstrukturen der Automobilindustrie-Konsequenzen für Prozesse und Informationssysteme. Oestrich-Winkel: White Paper, European Business School.

    Google Scholar 

  • Linsmeier, T. J., & Pearson, N. D. (2000). Risk measurement: an introduction to value at risk. Financial Analyst Journal, 2(56), 47–67.

    Article  Google Scholar 

  • Lima, Z., & Huchzermeier, A. (2013). Continuous improvement of operations and Finance: closed-loop view of integrated risk management. Victoria: Working Paper, Social Science Research Network.

    Google Scholar 

  • Lipp, U., & Hermann, W. (2008). Besprechungen und Seminaren (8th ed.). Weinheim: Das grosse Workshop-Buch. Konzeption, Inszenierung und Moderation von Klausuren Weinheim: Beltz-Verlag.

    Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance, 2(29), 449–470.

    Google Scholar 

  • Mieghem van, J. A. (2012). Handbook of integrated risk management in global supply chains. New Jersey: Wiley.

    Google Scholar 

  • Nordcliffe, M. (2012). The Automotive Industry in BRIC Markets. In Managing business risk, (8th edn, pp 174–182). London/Philadelphia: Cogan Page Ltd.

  • Rappaport, A. (2009). A guide for managers and investors (2nd edn). Creating Shareholder Value. New York: The Free Press.

  • Reh, G. (2001). Ablaufplan: Einführung eines Risikomanagementsystems. In W. Gleissner, Meier, W. (Eds.). Wertorientiertes Risikomanagement für Industrie und Handel. Methoden, Fallbeispiele, Checklisten, (pp 27–43). Wiesbaden: Gabler-Verlag.

  • Reichling, P., Bietke, D., Henne, A. (2007). Praxishandbuch Risikomanagement und Rating. Ein Leitfaden, (2nd edn). Wiesbaden: Gabler-Verlag.

  • Romeike, F., & Hager, P. (2009). Beispiele, Checklisten (2nd edn). Erfolgsfaktor Risikomanagement 2.0. Methoden Wiesbaden: Gabler-Verlag.

  • Romeike, F. (2012) ‘Risiko-Identifikation’, http://www.risknet.de/fileadmin/downloads/Risiko_Checkliste_RiskNET.pdf. Accessed on 21 Jan 2012.

  • Rockafellar, T. R., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7), 1443–1471.

    Article  Google Scholar 

  • Rübel, G. (2009). Grundlagen der monetären Aussenwirtschaft (3rd edn). Munich: Oldenbourg-Verlag.

  • Santoso, T., Ahmend, S., Goetschalckx, M., & Shapiro, A. (2004). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operation Research, 167(1), 96–115.

    Article  Google Scholar 

  • Sanz, F. J. G. (2007). Ganzheitliche Beschaffungsstrategie als Gestaltungsrahmen der globalen Netzwerkintegration in der Automobilindustrie. In F. J. G. Sanz, K. Semmler, J. Walther (Eds.), ’Die Automobilindustrie auf dem Weg zur globalen Netzwerkkompetenz. Springer-Verlag, Berlin/Heidelberg: Effiziente und flexible Supply Chains erfolgreich gestalten.

  • Seidel, U. W. (2011). Grundlagen und Aufbau eines Risikomanagementsystems. In A. Klein (Ed.), Risikomanagement und Risiko-Controlling: Moderne Instrumente, Grundlagen und Lösungen. Freiburg: Haufe-Verlag.

    Google Scholar 

  • Schmidt, D., & Heilmann, A. (2012). Aussenpolitik und Aussenwirtschaft der Volksrepublik China. Wiesbaden: Springer-Verlag.

    Book  Google Scholar 

  • Schmidt, G., & Wilhelm, W. E. (2000). Strategic, tactical and operational decisions in multi-national logistics networks. A review and discussion of modeling issues. International Journal of Production Research, 38(7), 1501–1523.

    Article  Google Scholar 

  • Schmitz, T., & Wehrheim, M. (2006). Risikomanagement-Grundlagen, Theorie Praxis. Stuttgart: Kohlhammer-Verlag.

    Google Scholar 

  • Snyder, L., Daskin, M. S., & Teo, C.-P. (2007). The stochastic location model with risk pooling. European Journal of Operational Research, 179(3), 1221–1238.

    Article  Google Scholar 

  • Sting, F.J., & Huchzermeier, A. (2011). Operational hedging and diversification under supply and demand uncertainty. working paper, available at SSRN: url http://dx.doi.org/10.2139/ssrn. Accessed on 12 Feb 2012.

  • German Association of the Automotive Industry (VDA) (2011). Jahresbericht 2011. VDA: Berlin

  • Vahrenkamp, R., & Siepermann, Chr. (2007). Risikomanagement in der Supply Chain. Berlin: Erich Schmidt Verlag

  • Vidal, C., & Goetschalckx, M. (2001). A global supply chain with transfer pricing and transportation costs allocation. European Journal of Operations Research, 129(1), 134–158.

    Article  Google Scholar 

  • Viswanadham, N., & Gaonkar, R. S. (2008). Risk management in global supply chain networks. Operations Research and Management Science, 119(2008), 201–222.

    Google Scholar 

  • Vose, D. (2008). Risk management. A quantitative guide, (3rd edn). West Sussex: Wiley.

  • Weber, A. (1909). ’Über den Standort der Industrien. 1. Teil: Reine Theorie des Standorts’, Tübingen.

  • Wannenwetsch, H. (2010). Integrierte Materialwirtschaft und Logistik. Beschaffung, Logistik, Materialwirtschaft und Produktion, (4th edn). Heidelberg: Springer-Verlag.

  • Wilhelm, W., Liang, D., Rao, B., Warrier, D., Zhu, X., & Bulusu, S. (2005). Design of international assembly systems and their supply chains under NAFTA. Transportation Research Part E Logistics and Transportation Review, 41(6), 467–493.

    Article  Google Scholar 

  • Wittek, K., Volling, T., Spengler, T., Gundlach, F. W. (2010) Tactical Planning in flexible production networks in the automotive industry. In B. Hu, K. Morsach, S. Pickl, M. Siegle (Eds.), Operations research proceedings 2010. Selected papers of the annual conference of the German operations research society, (pp 429–434). Berlin/Heidelberg: Springer-Verlag.

  • Ziegenbein, A. (2007) Supply chain risiken. Identifikation, Bewertung, Steuerung. Zuerich: vdf Hochschulverlag.

Download references

Acknowledgments

The first author was supported by Thomas Ilgenfritz, Franz Homberger and the participants of the internal workshops (working for Daimler AG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Häntsch.

Appendix A

Appendix A

Following optimization model is used for calculate the monetary impact of the risks on the production network.

The following indexes are defined for the optimization model:

$$\begin{aligned} \begin{array}{llll} \hbox {i}&{} \in &{} {\{}1, 2, {\ldots }, \hbox {I}{\}}&{} \hbox {products}\\ \hbox {i}2 &{}\in &{} {\{}1, 2, {\ldots }, \hbox {I}2{\}}&{} \hbox {supplied parts}\\ \hbox {f}&{} \in &{} {\{}1, 2, {\ldots }, \hbox {F}{\}}&{} \hbox {facilities}\\ \hbox {f}2&{} \in &{} {\{}1, 2, {\ldots }, \hbox {F}2{\}}&{} \hbox {supplier}\\ \hbox {t}&{} \in &{} {\{}1, 2, {\ldots }, \hbox {T}{\}}&{} \hbox {period}\\ \hbox {n}&{}\in &{} {\{}1, 2, {\ldots }, \hbox {N}{\}}&{} \hbox {scenarios}\\ \hbox {c}&{} \in &{}{\{}1, 2, {\ldots }, \hbox {C}{\}}&{} \hbox {configurations}\\ \hbox {m} &{}\in &{} {\{}1, 2, {\ldots }, \hbox {M}{\}}&{} \hbox {markets}\\ \end{array} \end{aligned}$$

The following variables are defined:

\(DCF_{t,n,c}\) :

\(=\) operating profit per period \(t\) per scenario \(n\) per configuration \(c\)

\(P_{i,f,t,n,c}\) :

\(=\) production volume of product typ \(i\) in facility \(f\) per period \(t\) per scenario \(n\) per configuration \(c\)

\(\textit{MaxProd}_{i,f,t,c}\) :

\(=\) maximum production volume of product typ \(i\) in facility \(f\) per period \(t\) per configuration \(c\)

\(\textit{MinProd}_{i,f,t,c}\) :

\(=\) minimum production volume of product typ \(i\) in facility \(f\) per period \(t\) per configuration \(c\)

\(pf_{i,f,t,c}^{capa}\) :

\(=\) capacity consumption per product typ \(i\) in facility \(f\) per period \(t\) per configuration \(c\)

\(C_{f,t,c}\) :

\(=\) capacity of facility \(f\) per period \(t\) per configuration \(c\)

\(\textit{BOM}_{i,i2}\) :

\(=\) bill of material of product \(i\) and supplied parts \(i2\)

\(TV_{i,i2,f,f2,t,n,c}^f\) :

\(=\) transport volume of supplied parts \(i2\) for product \(i \)from supplier \(f2\) to facility \(f\) per period \(t\) per scenario \(n\) per configuration \(c\)

\(TV_{i,f,t,n,c,m}^m\) :

\(=\) transport volume of product \(i \)from facility \(f\) for market \(m\) per period \(t\) per scenario \(n\) per configuration \(c\)

\(Costs_{t,n,c}\) :

\(=\) costs per period \(t\) per scenario \(n\) per configuration \(c\)

\(Revenue_{t,n,c}\) :

\(=\) revenues per period \(t\) per scenario \(n\) per configuration \(c\)

\(WACC\) :

\(=\) discount factor

The objective function is:

$$\begin{aligned} \max \left\{ {DCF_{n,c} } \right\} \qquad \qquad \qquad \qquad \qquad \forall n,c \end{aligned}$$

where:

$$\begin{aligned} DC\!F_{n,c} =\mathop \sum \limits _{t=1}^T \frac{(Revenue_{t,n,c} -Costs_{t,n,c} )}{(1+WACC)^t} \qquad \qquad \qquad \qquad \qquad \forall n,c \end{aligned}$$

subject to:

$$\begin{aligned} \begin{array}{l@{\quad }l} P_{i,f,t,n,c} \le \textit{MaxProd}_{i,f,t,c} &{} \forall i,f,t,n,c \\ P_{i,f,t,n,c} \ge \textit{MinProd}_{i,f,t,c} &{} \forall i,f,t,n,c \\ \sum \limits _i P_{i,f,t,n,c} *pf_{i,f,t,c}^{capa} \le C_{f,t,c} &{} \forall f,t,n,c \\ \textit{BOM}_{i,i2} *P_{i,f,t,n,c} =\mathop \sum \limits _f TV_{i,i2,f,f2,t,n,c}^f &{} \forall i,i2,f2,t,n,c \\ P_{i,f,t,n,c} =\left( {\mathop \sum \limits _m TV_{i,f,t,n,c,m}^m +\mathop \sum \limits _{f2,i2} TV_{i,i2,f,f2,t,n,c}^f }\right) &{} \forall i,f,t,n,c \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häntsch, M., Huchzermeier, A. Identifying, analyzing, and assessing risk in the strategic planning of a production network: the practical view of a German car manufacturer. J Manag Control 24, 125–158 (2013). https://doi.org/10.1007/s00187-013-0178-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00187-013-0178-y

Keywords

Navigation