Skip to main content
Log in

Approximations for Pareto and Proper Pareto solutions and their KKT conditions

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this article, we view the Pareto and weak Pareto solutions of the multiobjective optimization by using an approximate version of KKT type conditions. In one of our main results Ekeland’s variational principle for vector-valued maps plays a key role. We also focus on an improved version of Geoffrion proper Pareto solutions and it’s approximation and characterize them through saddle point and KKT type conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreani R, Haeser G, Martínez JM (2011) On sequential optimality conditions for smooth constrained optimization. Optimization 60(5):627–641

    Article  MathSciNet  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2013) Nonlinear programming: theory and algorithms. Wiley, New York

    MATH  Google Scholar 

  • Beltran F, Cuate O, Schutze O (2020) The Pareto tracer for general inequality constrained multi-objective optimization problems. Math Comput Appl 25:80. https://doi.org/10.3390/mca25040080

    Article  MathSciNet  Google Scholar 

  • Bennet G, Peitz S (2021) An efficient descent method for locally Lipschitz multiobjective problem. J Optim Th Appl 188:696–723

    Article  MathSciNet  Google Scholar 

  • Braun M, Seijo S, Echanobe J, Shukla PK, Campo I, Garcia-Sedano J, Schmeck H (2016) A neuro-genetic approach for modeling and optimizing a complex cogeneration process. Appl Soft Comput 48:347–358

    Article  Google Scholar 

  • Braun M, Shukla PK, Schmeck H (2015) Obtaining optimal Pareto front approximations using scalarized preference information. Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp 631–638

  • Chankong V, Haimes YY (2008) Multiobjective decision making: theory and methodology. Courier Dover Publications, New York

    MATH  Google Scholar 

  • Chuong TD, Kim DS (2016) Approximate solutions of multiobjective optimization problems. Positivity 20(1):187–207

    Article  MathSciNet  Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis, vol 5. Wiley, New York (Republished by SIAM 1990)

    MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Tewari R, Dixit M, Dutta J (2007) Finding trade-off solutions close to KKT points using evolutionary multiobjective optimization. Proceedings of the 2007 IEEE Congress on Evolutionary Computation, pp 2109–2116

  • Deb K, Abouhawwash M, Dutta J (2015) An optimality theory based proximity measure for evolutionary multiobjective and many objective optimization. Lecture Notes Comput Sci 9019:18–33

    Article  Google Scholar 

  • Dhara A, Dutta J (2011) Optimality conditions in convex optimization: a finite-dimensional view. CRC Press, Cambridge

    Book  Google Scholar 

  • Durea M, Dutta J, Tammer C (2011) Stability properties of KKT points in vector optimization. Optimization 60(7):823–838

    Article  MathSciNet  Google Scholar 

  • Dutta J (2012) Strong KKT, second order conditions and non-solid cones in vector optimization. In: Recent Developments in Vector Optimization, pp 127–167. Springer

  • Dutta J, Deb K, Tulshyan R, Arora R (2013) Approximate KKT points and a proximity measure for termination. J Global Optim 56(4):1463–1499

    Article  MathSciNet  Google Scholar 

  • Dutta J, Vetrivel V (2001) On approximate minima in vector optimization. Numer Funct Anal Optim 22(7–8):845–859

    Article  MathSciNet  Google Scholar 

  • Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Eichfelder G (2008) Adaptive scalarization methods in multiobjective optimization, vol 436. Springer, Berlin

    Book  Google Scholar 

  • Eichfelder G (2014) Variable ordering structures in vector optimization. Springer, Berlin

    Book  Google Scholar 

  • Eichfelder G, Warnow L (2021) Proximity measures based on KKT points for constrained multi-objective optimization. J Global Optim 80:63–86

    Article  MathSciNet  Google Scholar 

  • Fukuda EH, Grana Drummond LM (2014) A survey on multiobjective descent methods. Pesquisa Operacional 34(3):585–620

    Article  Google Scholar 

  • Giorgi G, Jiménez B, Novo V (2016) Approximate Karush–Kuhn–Tucker condition in multiobjective optimization. J Optim Theory Appl 171(1):70–89

    Article  MathSciNet  Google Scholar 

  • Göpfert Alfred, Riahi Hassan, Tammer Christiane, Zalinescu Constantin (2006) Variational methods in partially ordered spaces. Springer, Berlin

    MATH  Google Scholar 

  • Goochi G, Liuzzi G, Luidi S, Sciandrone M (2020) On the convergence of steepest descent methods for multiobjective optimization. Comput Opt Appl. https://doi.org/10.1007/s10589-020-00192-0

    Article  MathSciNet  Google Scholar 

  • Gutiérrez C, Jiménez B, Novo V (2006) On approximate efficiency in multiobjective programming. Math Methods Oper Res 64(1):165–185

    Article  MathSciNet  Google Scholar 

  • Gutiérrez C, Jiménez B, Novo V (2010) Optimality conditions via scalarization for a new \(\varepsilon \)-efficiency concept in vector optimization problems. Eur J Oper Res 201(1):11–22

    Article  MathSciNet  Google Scholar 

  • Hillermeirer C (2001) Nonlinear multiobjective optimization-a generalized homotopy approach. Birkhauser

  • Jahn J (2004) Vector optimization : theory, applications, and extensions. Springer, Berlin

    Book  Google Scholar 

  • Khan AA, Tammer C, Zalinescu C (2016) Set-valued optimization. Springer, Berlin

    MATH  Google Scholar 

  • Kesarwani P, Shukla PK, Dutta J, Deb K (2019) Approximations for Pareto and Proper Pareto Solutions and their KKT conditions. Optimization Online, http://www.optimization-online.org/DB _HTML/2018/10/6845.html

  • Kuhn HW, Tucker AW (1951) Nonlinear Programming. Proceedings of the 2nd Berkeley symposium on Mathematical Statistics

  • Liu JC (1999) \(\varepsilon \)-properly efficient solutions to nondifferentiable multiobjective programming problems. Appl Math Lett 12(6):109–113

    Article  MathSciNet  Google Scholar 

  • Loridan P (1984) \(\varepsilon \)-solutions in vector minimization problems. J Optim Theory Appl 43(2):265–276

    Article  MathSciNet  Google Scholar 

  • Luc DT (1989) Theory of vector optimization. Springer, Berlin

    Book  Google Scholar 

  • Martin A, Schutze O (2018) Pareto Tracer: a predictor-corrector method for multiobjective optimization problem. Eng Optim 50(3):516–536

    Article  MathSciNet  Google Scholar 

  • Miettinen K (1999) Nonlinear Programming. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  • Mordukhovich BS, Nam NM (2013) An easy path to convex analysis and applications, vol 6. Morgan & Claypool Publishers, San Rafael

    MATH  Google Scholar 

  • Mordukhovich Boris S (2006) Variational analysis and generalized differentiation I: Basic theory, vol 330. Springer, Berlin

    Book  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Oxford

    Book  Google Scholar 

  • Rockafellar RT, Wets RJB (1998) Variational analysis, vol 317. Springer, Berlin

    Book  Google Scholar 

  • Shukla PK, Dutta J, Deb K, Kesarwani P (2019) On a practical notion of geoffrion proper optimality in multicriteria optimization. Optimization, pp 1–27

  • Shukla PK, Braun M (2013) Indicator based search in variable orderings: theory and algorithms. Lect Notes Comput Sci 7811:66–80

    Article  Google Scholar 

  • Tammer C (1992) A generalization of Ekeland’s variational principle. Optimization 25(2–3):129–141

    Article  MathSciNet  Google Scholar 

  • Tanabe H, Fukuda EH, Yamashita N (2019) Proximal gradient methods for multiobjective optimization and application. Comput Optim Appl 72(2):339–361

    Article  MathSciNet  Google Scholar 

  • Valyi I (1985) Approximate solutions of vector optimization problems. Annu Rev Autom Program 12:246–250

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their constructive comments which has greatly improved the presentation of the paper. We are also very thankful to the Associate Editor for bringing to our notice the reference Beltran et al. (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dutta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesarwani, P., Shukla, P.K., Dutta, J. et al. Approximations for Pareto and Proper Pareto solutions and their KKT conditions. Math Meth Oper Res 96, 123–148 (2022). https://doi.org/10.1007/s00186-022-00787-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-022-00787-9

Keywords

Navigation