Skip to main content

The blockwise coordinate descent method for integer programs

Abstract

Blockwise coordinate descent methods have a long tradition in continuous optimization and are also frequently used in discrete optimization under various names. New interest in blockwise coordinate descent methods arises for improving sequential solutions for problems which consist of several planning stages. In this paper we systematically formulate and analyze the blockwise coordinate descent method for integer programming problems. We discuss convergence of the method and properties of the resulting solutions. We extend the notion of Pareto optimality for blockwise coordinate descent to the case that the blocks do not form a partition and compare Pareto optimal solutions to blockwise optimal and to global optimal solutions. Among others we derive a condition which ensures that the solution obtained by blockwise coordinate descent is weakly Pareto optimal and we confirm convergence of the blockwise coordinate descent to a global optimum in matroid polytopes. The results are interpreted in the context of multi-stage linear integer programming problems and illustrated for integrated planning in public transportation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amberg B, Amberg B, Kliewer N (2018) Robust efficiency in urban public transportation: minimizing delay propagation in cost-efficient bus and driver schedules. Transp Sci (published online)

  2. Bilgen B (2007) An iterative fixing variable heuristic for solving a combined blending and distribution planning problem. Springer, Berlin, pp 231–238

    MATH  Google Scholar 

  3. Burggraeve S, Bull SH, Lusby RM, Vansteenwegen P (2017) Integrating robust timetabling in line plan optimization for railway systems. Transp Res C 77:134–160

    Article  Google Scholar 

  4. Cadarso L, Marin A (2012) Integration of timetable planning and rolling stock in rapid transit networks. Ann Oper Res 199:113–135

    MathSciNet  Article  Google Scholar 

  5. Cooper L (1964) Heuristic methods for location–allocation problems. SIAM Rev 6:37–53

    MathSciNet  Article  Google Scholar 

  6. Dasgupta S, Papadimitriou C, Vazirani U (2008) Algorithms. McGraw-Hill, New York

    Google Scholar 

  7. D’Esopo DA (1959) A convex programming procedure. Nav Res Logist Q 6(1):33–42

    MathSciNet  Article  Google Scholar 

  8. Drezner Z, Salhi S (2017) Incorporating neighborhood reduction for the solution of the planar p-median problem. Ann Oper Res 258(2):639–654

    MathSciNet  Article  Google Scholar 

  9. Drezner Z, Brimberg J, Mladenovićc N, Salhi S (2015) New heuristic algorithms for solving the planar p-median problem. Comput Oper Res 62:296–304

    MathSciNet  Article  Google Scholar 

  10. Du Q, Emelianenko M, Ju L (2006) Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J Numer Anal 44:102–119

    MathSciNet  Article  Google Scholar 

  11. Fonseca JP, van der Hurk E, Roberti R, Larsen A (2018) A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling. Transp Res Part B Methodol 109:128–149

    Article  Google Scholar 

  12. Gattermann P, Schiewe A, Schöbel A (2016) An iterative approach for integrated planning in public transportation. In: 9th triennial symposium on transportation analysis

  13. Gintner V, Steinzen I, Suhl L (2005) A variable fixing heuristic for the multiple-depot integrated vehicle and crew scheduling problem. In: Proceedings of 10th meeting of advanced OR and AI methods in transportation, and 16th mini EURO conference of the EURO working group on transportation (EWGT), pp 547–552

  14. Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper Res Lett 26(3):127–136

    MathSciNet  Article  Google Scholar 

  15. Guihaire V, Hao J-T (2008) Transit network design and scheduling: a global review. Transp Res Part E 42:1251

    Google Scholar 

  16. Hawkins DM (1994) The feasible solution algorithm for least trimmed squares regression. Comput Stat Data Anal 17(2):185–196

    Article  Google Scholar 

  17. Hildreth C (1957) A quadratic programming procedure. Nav Res Logist Q 4(1):79–85

    MathSciNet  Article  Google Scholar 

  18. Jäger S (2016) Iterative algorithms for integrated optimization problems. Masterarbeit, Georg-August-Universität Göttingen, 5

  19. Klamroth K, Mostaghim S, Naujoks BB et al (2017) Multiobjective optimization for interwoven systems. Multi-Critieria Decis Anal 24:71–81

    Article  Google Scholar 

  20. Kleinberg J, Tardos E (2014) Algorithm design: pearson new, International edn. Pearson, London

    Google Scholar 

  21. Liebchen C, Möhring R (2007) The modeling power of the periodic event scheduling problem: railway timetables and beyond. In: Algorithmic methods for railway optimization, volume 4359 of lecture notes in computer science. Springer, pp 3–40

  22. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    MathSciNet  Article  Google Scholar 

  23. Meng L, Corman F, Zhou X, Tang T (2018) Special issue on integrated optimization models and algorithms in rail planning and control (editorial). Transp Res C 88:87–90

    Article  Google Scholar 

  24. Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14(1):124–143

    MathSciNet  Article  Google Scholar 

  25. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York

    Book  Google Scholar 

  26. Pätzold J, Schiewe A, Schiewe P, Schöbel A (2017) Look-ahead approaches for integrated planning in public transportation. In: D’Angelo G, Dollevoet T (eds) 17th workshop on algorithmic approaches for transportation modelling. Optimization, and systems (ATMOS 2017), volume 59 of OpenAccess Series in Informatics (OASIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 1–16

  27. Petersen HL, Larsen A, Madsen OBG, Petersen B, Ropke S (2013) The simultaneous vehicle scheduling and passenger service problem. Transp Sci 47(4):603–616

    Article  Google Scholar 

  28. Rousseeuw PJ (1987) Robust regression and outlier detection. Wiley, New York

    Book  Google Scholar 

  29. Schiewe A, Schiewe P (2018) An iterative approach for integrated planning in public transportation. submitted

  30. Schiewe P, Schöbel A (2019) Integrated optimization of sequential planning processes. Working paper

  31. Schmid V, Ehmke JF (2016) Integrated timetabling and vehicle scheduling with balanced departure times. OR Spectr 37(4):903–928

    MathSciNet  Article  Google Scholar 

  32. Schmidt M, Schöbel A (2015) Timetabling with passenger routing. OR Spectr 37:75–97

    MathSciNet  Article  Google Scholar 

  33. Schöbel A (2017) An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transp Res C 74:348–365

    Article  Google Scholar 

  34. Spühler F (2018) Blockkoordinaten-Abstiegsverfahren für kombinatorische Probleme. Georg-August Univesität Göttingen, Bachelor-Arbeit

    Google Scholar 

  35. Steinzen I, Gintner V, Suhl L, Kliewer N (2010) A time-space network approach for the integrated vehicle- and crew-scheduling problem with multiple depots. Transp Sci 44(3):367–382

    Article  Google Scholar 

  36. Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theory Appl 109(3):475–494

    MathSciNet  Article  Google Scholar 

  37. Tyrrell Rockafellar R (1970) Convex analysis. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton

    Book  Google Scholar 

  38. Voorneveld M (2000) Best-response potential games. Econ Lett 66(3):289–295

    MathSciNet  Article  Google Scholar 

  39. Warga J (1963) Minimizing certain convex functions. J Soc Ind Appl Math 11(3):588–593

    MathSciNet  Article  Google Scholar 

  40. Zangwill Willard I (1969) Nonlinear programming: a unified approach. Prentice-Hall International Series in Management. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anita Schöbel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jäger, S., Schöbel, A. The blockwise coordinate descent method for integer programs. Math Meth Oper Res 91, 357–381 (2020). https://doi.org/10.1007/s00186-019-00673-x

Download citation

Keywords

  • Descent method
  • Multi-stage problem
  • Algorithm
  • Heuristic
  • Integer program
  • Public transport