Advertisement

Mathematical Methods of Operations Research

, Volume 87, Issue 2, pp 169–195 | Cite as

An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution

  • Zhilin Kang
  • Zhongfei Li
Original Article
  • 287 Downloads

Abstract

This paper proposes a unified framework to solve distributionally robust mean-risk optimization problem that simultaneously uses variance, value-at-risk (VaR) and conditional value-at-risk (CVaR) as a triple-risk measure. It provides investors with more flexibility to find portfolios in the sense that it allows investors to optimize a return-risk profile in the presence of estimation error. We derive a closed-form expression for the optimal portfolio strategy to the robust mean-multiple risk portfolio selection model under distribution and mean return ambiguity (RMP). Specially, the robust mean-variance, robust maximum return, robust minimum VaR and robust minimum CVaR efficient portfolios are all special instances of RMP portfolios. We analytically and numerically show that the resulting portfolio weight converges to the minimum variance portfolio when the level of ambiguity aversion is in a high value. Using numerical experiment with simulated data, we demonstrate that our robust portfolios under ambiguity are more stable over time than the non-robust portfolios.

Keywords

Portfolio selection Multiple-risk measures Distribution ambiguity Minimum variance portfolio Robustness 

Mathematics Subject Classification

91G10 91B30 90C29 62G35 

Notes

Acknowledgements

The authors thank the editor and an anonymous referee for their insightful comments and suggestions which improved the quality of the paper. In addition, fruitful comments from Professor Shushang Zhu for an early version are much appreciated.

References

  1. Alexander GJ, Baptista AM (2002) Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. J Eco Dyn Control 26(7):1159–1193MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alexander GJ, Baptista AM (2004) A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Manag Sci 50(9):1261–1273CrossRefGoogle Scholar
  3. Artzner P, Delbaen F, Eber JM et al (1999) Coherent measures of risk. Math Finance 9(3):203–228MathSciNetCrossRefzbMATHGoogle Scholar
  4. Baixauli-Soler JS, Alfaro-Cid E, Fernandez-Blanco MO (2010) Several risk measures in portfolio selection: is it worthwhile? Spanish J Finance Acco/Rev Espanola Financ Contab 39(147):421–444Google Scholar
  5. Broadie M (1993) Computing efficient frontiers using estimated parameters. Ann Oper Res 45(1):21–58CrossRefzbMATHGoogle Scholar
  6. Chen L, He S, Zhang S (2011) Tight bounds for some risk measures, with applications to robust portfolio selection. Oper Res 59(4):847–865MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cornuejols G, Tutuncu R (2006) Optimization methods in finance. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  8. Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper Res 58(3):595–612MathSciNetCrossRefzbMATHGoogle Scholar
  9. DeMiguel V, Nogales FJ (2009) Portfolio selection with robust estimation. Oper Res 57(3):560–577MathSciNetCrossRefzbMATHGoogle Scholar
  10. DeMiguel V, Garlappi L, Uppal R (2009) Optimal versus naive diversification: how inefficient is the 1/N portfolio strategy? Rev Financ Stud 22(5):1915–1953CrossRefGoogle Scholar
  11. Deng XT, Li ZF, Wang SY (2005) A minimax portfolio selection strategy with equilibrium. Eur J Oper Res 166(1):278–292MathSciNetCrossRefzbMATHGoogle Scholar
  12. Fabozzi FJ, Kolm PN, Pachamanova D, Focardi SM (2007) Robust portfolio optimization and management. Wiley, HobokenGoogle Scholar
  13. Fabozzi FJ, Huang D, Zhou G (2010) Robust portfolios: contributions from operations research and finance. Ann Oper Res 176(1):191–220MathSciNetCrossRefzbMATHGoogle Scholar
  14. Fabretti A, Herzel S, Pinar MC (2014) Delegated portfolio management under ambiguity aversion. Oper Res Lett 42(2):190–195MathSciNetCrossRefGoogle Scholar
  15. Fliege J, Werner R (2014) Robust multiobjective optimization & applications in portfolio optimization. Eur J Oper Res 234(2):422–433MathSciNetCrossRefzbMATHGoogle Scholar
  16. Garlappi L, Uppal R, Wang T (2007) Portfolio selection with parameter and model uncertainty: a multi-prior approach. Rev Financ Stud 20(1):41–81CrossRefGoogle Scholar
  17. Ghaoui LE, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper Res 51(4):543–556MathSciNetCrossRefzbMATHGoogle Scholar
  18. Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1):1–38MathSciNetCrossRefzbMATHGoogle Scholar
  19. Gao J, Xiong Y, Li D (2016) Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time. European Eur J Oper Res 249(2):647–656MathSciNetCrossRefzbMATHGoogle Scholar
  20. IBM ILOG CPLEX 12.1–Parameters Reference Manual. Information http://www.ilog.com (2009)
  21. Jagannathan R, Ma T (2003) Risk reduction in large portfolios: why imposing the wrong constraints helps. J Finance 58(4):1651–1684CrossRefGoogle Scholar
  22. Jorion P (1985) International portfolio diversification with estimation risk. J Bus 58(3):259–278CrossRefGoogle Scholar
  23. Kim JH, Kim WC, Fabozzi FJ (2014) Recent developments in robust portfolios with a worst-case approach. J Optim Theory Appl 161(1):103–121MathSciNetCrossRefzbMATHGoogle Scholar
  24. Lobo MS, Boyd S (2000) The worst-case risk of a portfolio. Unpublished manuscript. http://www.faculty.fuqua.duke.edu/%7Emlobo/bio/researchfiles/rsk-bnd.pdf. Accessed 18 Apr 2015
  25. Markowitz HM (1952) Portfolio selection. J Finance 7:77–91Google Scholar
  26. Merton RC (1980) On estimating the expected return on the market: an exploratory investigation. J Financ Econom 8(4):323–361CrossRefGoogle Scholar
  27. Natarajan KD, Sim M, Uichanco J (2010) Tractable robust expected utility and risk models for portfolio optimization. Math Finance 20(4):695–731MathSciNetCrossRefzbMATHGoogle Scholar
  28. Pac AB, Pinar MC (2014) Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity. TOP 22(3):875–891MathSciNetCrossRefzbMATHGoogle Scholar
  29. Pinar MC (2014) Equilibrium in an ambiguity-averse mean-variance investors market. Eur J Oper Res 237(3):957–965MathSciNetCrossRefzbMATHGoogle Scholar
  30. Pinar MC (2016) On robust mean-variance portfolios. Optimization 65(5):1–10MathSciNetCrossRefzbMATHGoogle Scholar
  31. Qian P, Wang Z, Wen Z (2015) A composite risk measure framework for decision making under uncertainty. arXiv preprint arXiv:1501.01126
  32. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41CrossRefGoogle Scholar
  33. Roman D, Darby-Dowman K, Mitra G (2007) Mean-risk models using two risk measures: a multi-objective approach. Quant Finance 7(4):443–458MathSciNetCrossRefzbMATHGoogle Scholar
  34. Scherer B (2007) Can robust portfolio optimisation help to build better portfolios? J Asset Manag 7(6):374–387CrossRefGoogle Scholar
  35. Sharpe WF (1964) Capital asset prices: a theory of market equilibrium under conditionsof risk. J Finance 19:425–442Google Scholar
  36. Shapiro A (2011) Topics in stochastic programming. CORE Lecture Series, Universite Catholique de LouvainGoogle Scholar
  37. Tang L, Ling A (2014) A closed-form solution for robust portfolio selection with worst-case CVaR risk measure. Math Probl Eng. doi: 10.1155/2014/494575
  38. Tutuncu RH, Koenig M (2004) Robust asset allocation. Ann Oper Res 132(1–4):157–187MathSciNetCrossRefzbMATHGoogle Scholar
  39. Zhu S, Fukushima M (2009) Worst-case conditional value-at-risk with application to robust portfolio management. Oper Res 57(5):1155–1168MathSciNetCrossRefzbMATHGoogle Scholar
  40. Zymler S, Kuhn D, Rustem B (2013) Worst-case value at risk of nonlinear portfolios. Manag Sci 59(1):172–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of MathematicsSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Sun Yat-sen Business SchoolSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Xinhua College of Sun Yat-sen UniversityGuangzhouPeople’s Republic of China
  4. 4.School of Mathematical ScienceHuaqiao UniversityFujianPeople’s Republic of China

Personalised recommendations