Approximations of time-dependent unreliable flow lines with finite buffers

Abstract

Flow lines process discrete workpieces on consecutive machines, which are coupled by buffers. Their operating environment is often stochastic and time-dependent. For the flow line under consideration, the stochasticity is generated by random breakdowns and successive stochastic repair times, whereas the processing times are deterministic. However, the release rate of workpieces to the line is time-dependent, due to changes in demand. The buffers between the machines may be finite or infinite. We introduce two new sampling approaches for the performance evaluation of such flow lines: one method utilizes an approximation based on a mixed-integer program in discrete time with discrete material, while the other approximation is based on partial and ordinary differential equations in continuous time and with a continuous flow of material. In addition, we sketch a proof that these two approximations are equivalent under some linearity assumptions. A computational study demonstrates the accuracy of both approximations relative to a discrete-event simulation in continuous time. Furthermore, we reveal some effects occurring in unreliable flow lines with time-dependent processing rates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Alfieri A, Matta A (2012) Mathematical programming formulations for approximate simulation of multistage production systems. Eur J Oper Res 219(3):773–783

    MathSciNet  Article  MATH  Google Scholar 

  2. Bendoly E, Donohue K, Schultz KL (2006) Behavior in operations management: assessing recent findings and revisiting old assumptions. J Oper Manag 24(6):737–752

    Article  Google Scholar 

  3. Buzacott JA, Hanifin LE (1978) Models of automatic transfer lines with inventory banks a review and comparison. AIIE Trans 10(2):197–207

    Article  Google Scholar 

  4. Chan WK, Schruben L (2008) Optimization models of discrete-event system dynamics. Oper Res 56(5):1218–1237

    MathSciNet  Article  MATH  Google Scholar 

  5. Coclite GM, Garavello M, Piccoli B (2005) Traffic flow on a road network. SIAM J Math Anal 36(6):1862–1886

    MathSciNet  Article  MATH  Google Scholar 

  6. Dallery Y, Gershwin SB (1992) Manufacturing flow line systems: a review of models and analytical results. Queueing Syst 12(1–2):3–94

    Article  MATH  Google Scholar 

  7. D’Apice C, Göttlich S, Herty M, Piccoli B (2010) Modeling, simulation and optimization of supply chains: a continuous approach. SIAM, Philadelphia

  8. Davis MHA (1984) Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J R Stat Soc Ser B 46(3):353–388

    MATH  Google Scholar 

  9. Davis MHA (1993) Markov models and optimization. Monographs on statistics and applied probability. Chapman & Hall, Boca Raton

    Google Scholar 

  10. Degond P, Ringhofer C (2007) Stochastic dynamics of long supply chains with random breakdowns. SIAM J Appl Math 68(1):59–79

    MathSciNet  Article  MATH  Google Scholar 

  11. Demir L, Tunali S, Eliiyi DT (2014) The state of the art on buffer allocation problem: a comprehensive survey. J Intell Manuf 25(3):371–392

    Article  Google Scholar 

  12. Dolgui A, Eremeev A, Kolokolov A, Sigaev V (2002) A genetic algorithm for the allocation of buffer storage capacities in a production line with unreliable machines. J Math Model Algorithms 1(2):89–104

    MathSciNet  Article  MATH  Google Scholar 

  13. Fan W (1976) Simulation of queueing network with time varying arrival rates. Math Comput Simul 18(3):165–170

    Article  MATH  Google Scholar 

  14. Fügenschuh A, Göttlich S, Herty M, Klar A, Martin A (2008) A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM J Sci Comput 30(3):1490–1507

    MathSciNet  Article  MATH  Google Scholar 

  15. Garavello M, Goatin P (2012) The Cauchy problem at a node with buffer. Discrete Contin Dyn Syst Ser A 32(6):1915–1938

    MathSciNet  Article  MATH  Google Scholar 

  16. Gershwin SB, Schick IC (1983) Modeling and analysis of three-stage transfer lines with unreliable machines and finite buffers. Oper Res 31(2):354–380

    Article  MATH  Google Scholar 

  17. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434

    MathSciNet  Article  Google Scholar 

  18. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1733

    Article  Google Scholar 

  19. Göttlich S, Herty M, Klar A (2005) Network models for supply chains. Commun Math Sci 3(4):545–559

    MathSciNet  Article  MATH  Google Scholar 

  20. Göttlich S, Martin S, Sickenberger T (2011) Time-continuous production networks with random breakdowns. Netw Heterog Media 6(4):695–714

    MathSciNet  Article  MATH  Google Scholar 

  21. Helber S, Schimmelpfeng K, Stolletz R, Lagershausen S (2011) Using linear programming to analyze and optimize stochastic flow lines. Ann Oper Res 182(1):193–211

    MathSciNet  Article  MATH  Google Scholar 

  22. Jaikumar R, Bohn RE (1992) A dynamic approach to operations management: an alternative to static optimization. Int J Prod Econ 27(3):265–282

    Article  Google Scholar 

  23. Kirchner C, Herty M, Göttlich S, Klar A (2006) Optimal control for continuous supply network models. Netwo Heterog Media 1(4):675–688

    MathSciNet  Article  MATH  Google Scholar 

  24. LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser Verlag, Basel

    Google Scholar 

  25. Li J, Meerkov SM (2009) Production systems engineering. Springer, New York

    Google Scholar 

  26. Mourani I, Hennequin S, Xie X (2007) Failure models and throughput rate of transfer lines. Int J Prod Res 45(8):1835–1859

    Article  MATH  Google Scholar 

  27. Nasr WW, Taaffe MR (2013) Fitting the \(Ph_{t}/M_{t}/s/c \) time-dependent departure process for use in tandem queueing networks. INFORMS J Comput 25(4):758–773

    MathSciNet  Article  Google Scholar 

  28. Schwarz JA, Selinka G, Stolletz R (2015) Performance analysis of time-dependent queueing systems: survey and classification. Omega. doi:10.1016/j.omega.2015.10.013

  29. Stolletz R, Lagershausen S (2013) Time-dependent performance evaluation for loss-waiting queues with arbitrary distributions. Int J Prod Res 51(5):1366–1378

    Article  Google Scholar 

  30. Takahashi K, Nakamura N (2002) Decentralized reactive Kanban system. Eur J Oper Res 139(2):262–276

    MathSciNet  Article  MATH  Google Scholar 

  31. Tan B (2015) Mathematical programming representations of the dynamics of continuous-flow production systems. IIE Trans 47(2):173–189

    Article  Google Scholar 

  32. Terwiesch C, Bohn RE (2001) Learning and process improvement during production ramp-up. Int J Prod Econ 70(1):1–19

    Article  Google Scholar 

  33. Vandergraft JS (1983) A fluid flow model of networks of queues. Manag Sci 29(10):1198–1208

    Article  MATH  Google Scholar 

  34. Weiss S, Schwarz JA, Stolletz R (2015) Buffer allocation problems for stochastic flow lines with unreliable machines. In: Proceedings of the 10th conference on stochastic models of manufacturing and service operations. Volos, Greece, pp 271–277

  35. Wu K (2014) Classification of queueing models for a workstation with interruptions: a review. Int J Prod Res 52(3):902–917

    Article  Google Scholar 

  36. Wu K, McGinnis L, Zwart B (2011) Queueing models for a single machine subject to multiple types of interruptions. IIE Trans 43(10):753–759

    Article  Google Scholar 

Download references

Acknowledgments

The author S. Kühn was financially supported by Stiftung Rheinland-Pfalz für Innovation, Project EvaC, FKZ 989 and the author S. Göttlich by the BMBF project KinOpt.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Göttlich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Göttlich, S., Kühn, S., Schwarz, J.A. et al. Approximations of time-dependent unreliable flow lines with finite buffers. Math Meth Oper Res 83, 295–323 (2016). https://doi.org/10.1007/s00186-015-0529-6

Download citation

Keywords

  • Unreliable flow line
  • Sampling
  • Mixed-integer program
  • Conservation laws
  • Piecewise deterministic process

Mathematics Subject Classification

  • 90B15
  • 90B30