Skip to main content

Advertisement

Log in

A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

A strongly polynomial-time algorithm is proposed for the strict homogeneous linear-inequality feasibility problem in the positive orthant, that is, to obtain \(x\in \mathbb {R}^n\), such that \(Ax > 0\), \(x> 0\), for an \(m\times n\) matrix \(A\), \(m\ge n\). This algorithm requires \(O(p)\) iterations and \(O(m^2(n+p))\) arithmetical operations to ensure that the distance between the solution and the iteration is \(10^{-p}\). No matrix inversion is needed. An extension to the non-homogeneous linear feasibility problem is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon S (1954) The relaxation method for linear inequalities. Can J Math 6(3):382–392

    Article  MATH  MathSciNet  Google Scholar 

  • Banach S (1922) Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math 3(7):133–181

    MATH  Google Scholar 

  • Barasz, M, Vempala, S (2010) A new approach to strongly polynomial linear programming. In: ICS, Proceedings, Tsinghua University Press, pp 42–48

  • Basu A, De Loera JA, Junod M (2014) On Chubanov’s method for linear programming. INFORM J Comput 26(2):336–350

    Article  Google Scholar 

  • Bauschke HH, Borwein JM (1996) On projection algorithms for solving convex problems. SIAM Rev 38:367–426

    Article  MATH  MathSciNet  Google Scholar 

  • Censor Y, Altschuler MD, Powlis WD (1988) On the use of Cimmino ’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl 4:607–623

    Article  MATH  MathSciNet  Google Scholar 

  • Censor Y, Chen W, Combettes PL, Davidi R, Herman GT (2012) On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput Optim Appl 51:1065–1088

    Article  MATH  MathSciNet  Google Scholar 

  • Censor Y, Elfving T (1982) New methods for linear inequalities. Linear Algebra Appl 42:199–211

    Article  MATH  MathSciNet  Google Scholar 

  • Chen W, Craft D, Madden TM, Zhang K, Kooy HM, Herman GT (2010) A fast optimization algorithm for multi-criteria intensity modulated proton therapy planning. Med Phys 7:4938–4945

    Article  Google Scholar 

  • Cimmino G (1938) Calcolo approssimate per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica ed il Progresso tecnico nell’Economia Nazionale, 9: 326–333. Consiglio Nazionale delle Ricerche, Ministero dell’Educazione Nazionale, Roma

  • Combettes PL (1993) The foundations of set theoretic estimation. Proc IEEE 81:182–208

    Article  Google Scholar 

  • Chubanov S (2012) A strongly polynomial algorithm for linear systems having a binary solution. Math Program 134(2):533–570

    Article  MATH  MathSciNet  Google Scholar 

  • Chubanov S (2010) A polynomial relaxation-type algorithm for linear programming. http://www.optimization-online.org/DB_FILE/2011/02/2915.pdf

  • Eremin II (1969) Féjer mappings and convex programming. Sib Math J 10:762–772

    Article  MathSciNet  Google Scholar 

  • Farkas J (1901) Theorie der einfachen Ungleichungen. J Reine Angew Math 124:1–27

    MATH  Google Scholar 

  • Filipowsky S (1995) On the complexity of solving feasible systems of linear inequalities specified with approximate data. Math Program 71:259–288

    Google Scholar 

  • Fourier JJB (1824) Reported in Analyse de travaux de l’Académie Royale des Sciences. Partie Mathématique, Histoire de l’Académie de Sciences de l’Institut de France 7 (1827) xlvii–lv

  • Goffin JL (1982) On the non-polynomiality of the relaxation method for a system of inequalities. Math Program 22:93–103

    Article  MATH  MathSciNet  Google Scholar 

  • Goffin JL, Luo ZQ, Ye Y (1996) Complexity analysis of an interior cutting plane method for convex feasibility problems. SIAM J Optim 6(3):638–652

    Article  MATH  MathSciNet  Google Scholar 

  • Gordan P (1873) Uber die auflosung linearer Gleichungen mit reelen coefficienten. Math Ann 6:23–28

    Article  MATH  MathSciNet  Google Scholar 

  • Gubin LG, Polyak BT, Raik EV (1967) The method of projections for finding the common point of convex sets. Comput Math Math Phys 7(6):1–24

    Article  Google Scholar 

  • Herman GT (2009) Fundamentals of computerized tomography: image reconstruction from projections, 2nd edn. Springer, London

    Book  Google Scholar 

  • Herman GT, Chen W (2008) A fast algorithm for solving a linear feasibility problem with application to intensity-modulated radiation therapy. Linear Algebra Appl 428:1207–1217

    Article  MATH  MathSciNet  Google Scholar 

  • Herman GT, Lent A, Lutz PH (1978) Relaxation methods for image reconstruction. Commun ACM 21:152–158

    Article  MATH  MathSciNet  Google Scholar 

  • Ho Y-C, Kashyap RL (1965) An algorithm for linear inequalities and its applications. IEEE Trans Electron Comput EC-14 5:683–688

    Article  Google Scholar 

  • Huard P (1967) Resolution of mathematical programming with nonlinear constraints by the method of centers. In: Abadie J (ed) Nonlinear programming. North Holland Publishing Co, Amsterdam, Holland, pp 207–219

    Google Scholar 

  • Huard P, Lieu BT (1966) La méthode des centres dans un espace topologique. Numer Math 8:56–67

    Article  MATH  MathSciNet  Google Scholar 

  • Kantorovich LV, Akilov GP (1959) Functional Analysis in Normed Spaces. Original. translated from the Russian by Brown DE, ed by Robertson AP (1964), Pergamon Press Book, Macmillan Co, New York

  • Kaczmarz S (1937) Angenherte auflsung von systemen linearer gleschungen. B Int Acad Pol Sci Lettres Classe des Sciences Mathématiques et Naturels. Série A. Sciences Mathematiques, Cracovie, Imprimerie de l ’Université, pp 355–357

  • Khachiyan LG (1979) A polynomial algorithm in linear programming (English translation). Sov Math Doklady 20:191–194

    MATH  Google Scholar 

  • Khachiyan LG, Todd MJ (1993) On the complexity of approximating the maximal inscribed ellipsoid for a polytope. Math Program 61:137–160

    Article  MATH  MathSciNet  Google Scholar 

  • Kuhn HW (1956) Solvability and consistency for linear equations and inequalities. Am Math Mon 63:217–232

    Article  MATH  Google Scholar 

  • Levin A (1965) On an algorithm for the minimization of convex functions. Sov Math Doklady 6:286–290

    Google Scholar 

  • Merzlyakov YI (1963) On a relaxation method of solving systems of linear inequalities. USSR Comput Math Math Phys 2:504–510

    Article  Google Scholar 

  • Motzkin TS (1936) Beitrage zur theorie der linearen ungleichungen. Section 13, Azriel, Jerusalem

  • Motzkin TS, Schoenberg IJ (1954) The relaxation method for linear inequalities. Can J Math 6:393–404

    Article  MATH  MathSciNet  Google Scholar 

  • Nemirovsky A, Yudin D (1983) Problem complexity and method efficiency in optimization. Wiley-Interscience Series in Discrete Mathematics, New York

    MATH  Google Scholar 

  • Newman DJ (1965) Location of the maximum on unimodal surfaces. J Assoc Comput Math 12:395–398

    Article  MATH  Google Scholar 

  • Polyak BT (1987) Introduction to optimization. Optimization Software Inc, New York

    Google Scholar 

  • Shor NZ (1985) Minimization methods for non-differentiable functions. Springer, Berlin Springer Series Computational Mathematics, 3

    Book  MATH  Google Scholar 

  • Tarasov SP, Khachiyan LG, Erlikh I (1988) The method of inscribed ellipsoids. Sov Math Doklady 37:226–230

    MATH  MathSciNet  Google Scholar 

  • Tardos E (1986) A strongly polynomial algorithm to solve combinatorial linear programs. Oper Res 34:250–256

    Article  MATH  MathSciNet  Google Scholar 

  • Todd MJ (1979) Some remarks on the relaxation method for linear inequalities, Technical report 419. School of Operations Research and Industrial Engineering,Cornell University, Ithaca, NY

  • Vaidya PM (1996) A new algorithm for minimizing a convex function over convex sets. Math Program 73:291–341

    MATH  MathSciNet  Google Scholar 

  • Vavasis SA, Ye Y (1996) A primal-dual interior point method whose running time depends only on the constraint matrix. Math Program 74(1):79–120

    Article  MATH  MathSciNet  Google Scholar 

  • Ye Y (1986) How partial knowledge helps to solve linear programs. J Complex 12:480–491

    Article  Google Scholar 

Download references

Acknowledgments

I appreciate my wife Sandra and Mestre Gonçalves immensely for non-technical help and I would like to thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Oliveira.

Additional information

Paulo Roberto Oliveira was partially supported by CNPq, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, P.R. A strongly polynomial-time algorithm for the strict homogeneous linear-inequality feasibility problem. Math Meth Oper Res 80, 267–284 (2014). https://doi.org/10.1007/s00186-014-0480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-014-0480-y

Keywords

Mathematics Subject Classification

Navigation