Mathematical Methods of Operations Research

, Volume 63, Issue 3, pp 435–442 | Cite as

The Shapley Valuation Function for Strategic Games in which Players Cooperate

  • Luisa Carpente
  • Balbina Casas-Méndez
  • Ignacio García-Jurado
  • Anne van den Nouweland
Original Article

Abstract

In this note we use the Shapley value to define a valuation function. A valuation function associates with every non-empty coalition of players in a strategic game a vector of payoffs for the members of the coalition that provides these players’ valuations of cooperating in the coalition. The Shapley valuation function is defined using the lower-value based method to associate coalitional games with strategic games that was introduced in Carpente et al. (2005). We discuss axiomatic characterizations of the Shapley valuation function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpente L, Casas-Méndez B, García-Jurado I, Van den Nouweland A (2005) Values for strategic games in which players cooperate. Int J Game Theory 33(3):397–419CrossRefMATHGoogle Scholar
  2. Montero M (2000) Endogenous coalition formation and bargaining. PhD dissertation, CentER, Tilburg University.Google Scholar
  3. Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9:169–182CrossRefMATHMathSciNetGoogle Scholar
  4. Norde H, Voorneveld M (2004) Characterizations of the value of matrix games. Math Soc Sci 48:193–206CrossRefMATHMathSciNetGoogle Scholar
  5. Shapley LS (1953) A value for n-person games. Ann Math Stud 28:307–318MathSciNetGoogle Scholar
  6. Shapley LS (1958) The solution of a symmetric market game. Ann Math Stud 40:145–162MathSciNetGoogle Scholar
  7. Shapley LS, Shubik M (1969) On market games. J Econ Theory 1:9–25CrossRefMathSciNetGoogle Scholar
  8. Van Damme E, Furth D (2002) Game theory and the market. In: Borm P, Peters H (eds) Chapters in game theory. Kluwer, Dordrecht, pp 51–81Google Scholar
  9. Von Neumann J, Morgenstern O (1953) Theory of games and economic behavior. Princeton University Press, (Ist edn, 1944), NJ, USAMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Luisa Carpente
    • 1
  • Balbina Casas-Méndez
    • 2
  • Ignacio García-Jurado
    • 2
  • Anne van den Nouweland
    • 3
  1. 1.Departamento de Matemáticas, Facultade de InformáticaUniversidade da CoruñaCoruñaSpain
  2. 2.Departamento de Estatística e IO, Facultade de MatemáticasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Department of Economics, 435 PLCUniversity of OregonEugeneUSA

Personalised recommendations