Skip to main content
Log in

The mixture design threshold accepting algorithm for generating \(\varvec{D}\)-optimal designs of the mixture models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Althöfer I, Koschnick KU (1991) On the convergence of threshold accepting. Appl Math Optim 24(1):183–195

    Article  MathSciNet  MATH  Google Scholar 

  • Angelis L, Bora-Senta E, Moyssiadis C (2001) Optimal exact experimental designs with correlated errors through a simulated annealing algorithm. Comput Stat Data Anal 37(3):275–296

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Atwood CL (1969) Optimal and efficient designs of experiments. Ann Math Stat 40(5):1570–1602

    Article  MathSciNet  MATH  Google Scholar 

  • Becker N (1968) Models for the response of a mixture. J R Stat Soc Ser B (Methodol) 30(2):349–358

    MathSciNet  MATH  Google Scholar 

  • Bezerra MA, Castro JT, Macedo RC, Da Silva DG (2010) Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling. Anal Chimica Acta 670(1–2):33–38

    Article  Google Scholar 

  • Böhning D (1986) A vertex-exchange-method in d-optimal design theory. Metrika 33:337–347

    Article  MathSciNet  MATH  Google Scholar 

  • Chan L, Meng J, Jiang Y, Guan Y (1998) Theory and methods: D-optimal axial designs for quadratic and cubic additive mixture models. Aust N Z J Stat 40(3):359–372

    Article  MathSciNet  MATH  Google Scholar 

  • Chandan C, Maheshwari R (2014) Mixed solvency concept in reducing surfactant concentration of self-emulsifying drug delivery systems of candesartan cilexetil using d-optimal mixture design. Asian J Pharm 7(2):83–91

    Google Scholar 

  • Cook RD, Nachtsheim CJ (1980) A comparison of algorithms for constructing exact d-optimal designs. Technometrics 22(3):315–324

    Article  MATH  Google Scholar 

  • Cornell JA (2011) Experiments with mixtures: designs, models, and the analysis of mixture data, vol 403. John Wiley & Sons, New York

    Book  Google Scholar 

  • Cox D (1971) A note on polynomial response functions for mixtures. Biometrika 58(1):155–159

    Article  MATH  Google Scholar 

  • Darroch J, Waller J (1985) Additivity and interaction in three-component experiments with mixtures. Biometrika 72(1):153–163

    Article  MathSciNet  MATH  Google Scholar 

  • Donev AN, Atkinson AC (1988) An adjustment algorithm for the construction of exact d-optimum experimental designs. Technometrics 30(4):429–433

    MathSciNet  MATH  Google Scholar 

  • Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J Comput Phys 90(1):161–175

    Article  MathSciNet  MATH  Google Scholar 

  • Eberhart R, Kennedy J (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Networks Citeseer 4:1942–1948

    Article  Google Scholar 

  • El-Malah Y, Nazzal S, Khanfar NM (2006) D-optimal mixture design: optimization of ternary matrix blends for controlled zero-order drug release from oral dosage forms. Drug Dev Ind Pharm 32(10):1207–1218

    Article  Google Scholar 

  • Fang KT, Lu X, Winker P (2003) Lower bounds for centered and wrap-around l2-discrepancies and construction of uniform designs by threshold accepting. J Complex 19(5):692–711

    Article  MATH  Google Scholar 

  • Fang KT, Ke X, Elsawah A (2017) Construction of uniform designs via an adjusted threshold accepting algorithm. J Complex 43:28–37

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York

    Google Scholar 

  • Fishman G (2013) Monte Carlo: concepts, algorithms, and applications. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  • Furlanetto S, Cirri M, Piepel G, Mennini N, Mura P (2011) Mixture experiment methods in the development and optimization of microemulsion formulations. J Pharm Biomed Anal 55(4):610–617

    Article  Google Scholar 

  • Guan Y, Xue H (1998) D-optimal designs of parameter estimation for the becker homogeneous models. J Northeast Univ (Nat Sci) 19(6):645–648

    MathSciNet  MATH  Google Scholar 

  • Haines LM (1987) The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models. Technometrics 29(4):439–447

    MATH  Google Scholar 

  • Harman R, Filová L, Richtárik P (2020) A randomized exchange algorithm for computing optimal approximate designs of experiments. J Am Stat Assoc 115(529):348–361

    Article  MathSciNet  MATH  Google Scholar 

  • He Q, Guan Y (1990) Note on simplex-centroid design of degree 3: D-optimality. J Northeast Univ Technol 15(5):504–507

    Google Scholar 

  • Heredia-Langner A, Carlyle WM, Montgomery DC, Borror CM, Runger GC (2003) Genetic algorithms for the construction of d-optimal designs. J Qual Technol 35(1):28–46

    Article  Google Scholar 

  • Kiefer J (1959) Optimum experimental designs. J R Stat Soc Ser B (Methodol) 21(2):272–304

    MathSciNet  MATH  Google Scholar 

  • Kiefer J (1961) Optimum designs in regression problems, ii. Ann Math Stat 32(1):298–325

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer J, Wolfowitz J (1959) Optimum designs in regression problems. Ann Math Stat 30(2):271–294

    Article  MathSciNet  MATH  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Dai R, Zhu J, Li X (2010) Optimizing color and lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine, and \(\alpha \)-tocopherol. J Food Eng 98(2):170–177

    Article  Google Scholar 

  • Liu S, Neudecker H (1997) Experiments with mixtures: optimal allocations for beckers models. Metrika 45(1):53–66

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer RK, Nachtsheim CJ (1988) Constructing exact d-optimal experimental designs by simulated annealing. Am J Math Manag Sci 8(3–4):329–359

    MathSciNet  MATH  Google Scholar 

  • Meyer RK, Nachtsheim CJ (1995) The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37(1):60–69

    Article  MathSciNet  MATH  Google Scholar 

  • Mikaeili F (1989) D-optimum design for cubic without 3-way effect on the simplex. J Stat Plan Inference 21(1):107–115

    Article  MathSciNet  MATH  Google Scholar 

  • Mikaeili F (1993) D-optimum design for full cubic on q-simplex. J Stat Plan Inference 35(1):121–130

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell TJ (1974) An algorithm for the construction of d-optimal experimental designs. Technometrics 16(2):203–210

    MathSciNet  MATH  Google Scholar 

  • Moldes A, Cendon Y, Barral M (2007) Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresour Technol 98(16):3069–3075

    Article  Google Scholar 

  • Nahata T, Saini TR (2008) D-optimal designing and optimization of long acting microsphere-based injectable formulation of aripiprazole. Drug Dev Ind Pharm 34(7):668–675

    Article  Google Scholar 

  • Piepel GF, Szychowski JM, Loeppky JL (2002) Augmenting scheffé linear mixture models with squared and/or crossproduct terms. J Qual Technol 34(3):297–314

    Article  Google Scholar 

  • Pukelsheim F, Rieder S (1992) Efficient rounding of approximate designs. Biometrika 79(4):763–770

    Article  MathSciNet  Google Scholar 

  • Scheffé H (1958) Experiments with mixtures. J R Stat Soc Ser B (Methodol) 20(2):344–360

    MathSciNet  MATH  Google Scholar 

  • Snee RD (1973) Techniques for the analysis of mixture data. Technometrics 15(3):517–528

    Article  Google Scholar 

  • Vienna JD (2014) Compositional models of glass/melt properties and their use for glass formulation. Proc Mater Sci 7:148–155

    Article  Google Scholar 

  • Winker P, Fang KT (1997) Application of threshold-accepting to the evaluation of the discrepancy of a set of points. SIAM J Numer Anal 34(5):2028–2042

    Article  MathSciNet  MATH  Google Scholar 

  • Winker P, Maringer D (2007) The threshold accepting optimisation algorithm in economics and statistics. In: Optimisation, Econometric and Financial Analysis, Springer, pp 107–125

  • Wong WK, Chen RB, Huang CC, Wang W (2015) A modified particle swarm optimization technique for finding optimal designs for mixture models. PloS ONE 10(6):e0124720

    Article  Google Scholar 

  • Wynn HP (1970) The sequential generation of d-optimum experimental designs. Ann Math Stat 41(5):1655–1664

    Article  MathSciNet  MATH  Google Scholar 

  • Yang M, Biedermann S, Tang E (2013) On optimal designs for nonlinear models: a general and efficient algorithm. J Am Stat Assoc 108(504):1411–1420

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Y (2011) D-optimal designs via a cocktail algorithm. Stat Comput 21(4):475–481

    Article  MathSciNet  MATH  Google Scholar 

  • Zaitri R, Bederina M, Bouziani T, Makhloufi Z, Hadjoudja M (2014) Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the mixture design modelling approach. Construct Build Mater 60:8–16

    Article  Google Scholar 

  • Zhang C (1993) D-optimality for the additive mixture model of 3-degree on the simplex. J Baotou Univ Iron Steel Technol 1:001

    Google Scholar 

  • Zhang C, Guan Y (1992) Generalized additive mixture model and its d-optimal designs. J Northeast Univ Tech 13:86–93

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees and the journal editorial team for providing valuable advice that improved the quality of the original manuscript. This work is supported by National Nature Sciences Foundation of China (12071096) and Guangzhou University graduate innovative ability training funding program (2018GDJC-D20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongqi Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, C. The mixture design threshold accepting algorithm for generating \(\varvec{D}\)-optimal designs of the mixture models. Metrika 85, 345–371 (2022). https://doi.org/10.1007/s00184-021-00832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00832-3

Keywords

Navigation