Skip to main content
Log in

On histogram-based regression and classification with incomplete data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider the problem of nonparametric regression with possibly incomplete covariate vectors. The proposed estimators, which are based on histogram methods, are fully nonparametric and straightforward to implement. The presence of incomplete covariates is handled by an inverse weighting method, where the weights are estimates of the conditional probabilities of having incomplete covariate vectors. We also derive various exponential bounds on the \(L_1\) norms of our estimators, which can be used to establish strong consistency results for the corresponding, closely related, problem of nonparametric classification with missing covariates. As the main focus and application of our results, we consider the problem of pattern recognition and statistical classification in the presence of incomplete covariates and propose histogram classifiers that are asymptotically optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bravo F (2015) Semiparametric estimation with missing covariates. J Multivar Anal 139:329–346

    Article  MathSciNet  Google Scholar 

  • Chen HY (2004) Nonparametric and semiparametric models for missing covariates in parametric regression. J Am Stat Assoc 99:1176–1189

    Article  MathSciNet  Google Scholar 

  • Chen Q, Paik MC, Kim M, Wang C (2016) Using link-preserving imputation for logistic partially linear models with missing covariates. Comput Stat Data Anal 101:174–185

    Article  MathSciNet  Google Scholar 

  • Devroye L, Györfi L (1983) Distribution-free exponential bound on the \(L_1\) error of partitioning estimates of a regression function. In: Konecny F, Mogyorodi J, Wertz W (eds) Proceeding of the 4th Pannonian symposium on mathematical statistics. Akademiai Kiado, Budapest, pp 67–76

    Google Scholar 

  • Devroye L, Györfi L (1985) Nonparametric density estimation: the \(L_1\) view. Wiley, New York

    MATH  Google Scholar 

  • Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, New York

    Book  Google Scholar 

  • Efromovich S (2012) Nonparametric regression with predictors missing at random. J Am Stat Assoc 106:306–319

    Article  MathSciNet  Google Scholar 

  • Guo X, Xu W, Zhu L (2014) Multi-index regression models with missing covariates at random. J Multivar Anal 123:345–363

    Article  MathSciNet  Google Scholar 

  • Györfi L (1991) Universal consistencies of a regression estimate for unbounded regression functions. In: Roussa G (ed) Nonparametric functional estimation and related topics. NATO ASI series. Kluwer Academic Publishers, Dordrecht, pp 329–338

    Chapter  Google Scholar 

  • Györfi L, Kohler M, Krzyżak A, Walk H (2002) A distribution-free theory of nonparametric regression. Springer, New York

    Book  Google Scholar 

  • Hall P, Kang KH (2005) Bandwidth choice for nonparametric classification. Ann Stat 33:284–306

    MathSciNet  MATH  Google Scholar 

  • Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    Article  MathSciNet  Google Scholar 

  • Hu Y, Zhu Q, Tian M (2014) An efficient technique of multiple imputation in nonparametric quantile regression. J Math Stat 10:30–44

    Article  Google Scholar 

  • Lee SM, Li CS, Hsieh SH, Huang LH (2012) Semiparametric estimation of logistic regression model with missing covariates and outcome. Metrika 75:621–653

    Article  MathSciNet  Google Scholar 

  • Liang H, Wang S, Robins J, Carroll R (2004) Estimation in partially linear models with missing covariates. J Am Stat Assoc 99:357–367

    Article  MathSciNet  Google Scholar 

  • Lipsitz SR, Ibrahim JG (1996) A conditional model for incomplete covariates in parametric regression models. Biometrika 83:916–922

    Article  Google Scholar 

  • Little JA, Rubin DB (2002) Statistical analysis with missing data. Wiley, Hoboken

    Book  Google Scholar 

  • Liu T, Yuan X (2016) Weighted quantile regression with missing covariates using empirical likelihood. Statistics 50:89–113

    Article  MathSciNet  Google Scholar 

  • Lukusa TM, Lee SM, Li CS (2016) Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates. Metrika 79:457–483

    Article  MathSciNet  Google Scholar 

  • Meier L, van de Geer S, Bühlmann P (2009) High-dimensional additive modeling. Ann Stat 37:3779–3821

    Article  MathSciNet  Google Scholar 

  • Mojirsheibani M (2012) Some results on classifier selection with missing covariates. Metrika 75:521–539

    Article  MathSciNet  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. Springer, New York

    Book  Google Scholar 

  • Racine J, Hayfield T (2008) Nonparametric econometrics: the np package. J Stat Softw 27:1–32

    Google Scholar 

  • Racine J, Li Q (2004) Nonparametric estimation of regression functions with both categorical and continuous data. J Econ 119:99–130

    Article  MathSciNet  Google Scholar 

  • Robins JM, Rotnitzky A, Zhao L (1994) Estimation of regression coefficients when some regresoors are not always observed. J Am Stat Assoc 89:846–866

    Article  Google Scholar 

  • Sinha S, Saha KK, Wang S (2014) Semiparametric approach for non-monotone missing covariates in a parametric regression model. Biometrics 70:299–311

    Article  MathSciNet  Google Scholar 

  • Wu K, Wu L (2007) Generalized linear mixed models with informative dropouts and missing covariates. Metrika 66:1–18

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mojirsheibani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

The Pima Indian Diabetes data set is available from https://www.kaggle.com/.

Code availability

Not applicable.

Funding

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Science Foundation (NSF) Grant DMS-1916161 of M. Mojirsheibani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, E., Mojirsheibani, M. On histogram-based regression and classification with incomplete data. Metrika 84, 635–662 (2021). https://doi.org/10.1007/s00184-020-00794-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00794-y

Keywords

Navigation