Discriminant analysis based on binary time series

Abstract

Binary time series can be derived from an underlying latent process. In this paper, we consider an ellipsoidal alpha mixing strictly stationary process and discuss the discriminant analysis and propose a classification method based on binary time series. Assume that the observations are generated by time series which belongs to one of two categories described by different spectra. We propose a method to classify into the correct category with high probability. First, we will show that the misclassification probability tends to zero when the number of observation tends to infinity, that is, the consistency of our discrimination method. Further, we evaluate the asymptotic misclassification probability when the two categories are contiguous. Finally, we show that our classification method based on binary time series has good robustness properties when the process is contaminated by an outlier, that is, our classification method is insensitive to the outlier. However, the classical method based on smoothed periodogram is sensitive to outliers. We also deal with a practical case where the two categories are estimated from the training samples. For an electrocardiogram data set, we examine the robustness of our method when observations are contaminated with an outlier.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data Availability Statement

The datasets analysed during the current study are available in Dau et al. (2018).

References

  1. Anderson TW (1984) An introduction to multivariate statistical analysis. Wiley, New York

    Google Scholar 

  2. Bagnall A, Janacek G (2005) Clustering time series with clipped data. Mach Learn 58(2–3):151–178

    MATH  Article  Google Scholar 

  3. Billinsley P (1968) Convergence of probability measures. Wiley, New York

    Google Scholar 

  4. Brillinger DR (1968) Estimation of the cross-spectrum of a stationary bivariate gaussian process from its zeros. J R Stat Soc Ser B Stat Methodol 30:145–159

    MathSciNet  MATH  Google Scholar 

  5. Brillinger DR (1981) Time series: data analysis and theory, expanded edn. Holden-Day, San Francisco

    Google Scholar 

  6. Buz A, Litan C (2012) What properties do clipped data inherit from the generating processes? Studia Universitatis Babes-Bolyai 57(3):85–96

    Google Scholar 

  7. Dau HA, Keogh E, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Chen Y, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2018) The UCR time series classification archive. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  8. Dette H, Hallin M, Kley T, Volgushev S (2015) Of copulas, quantiles, ranks and spectra: An \(l_1\)-approach to spectral analysis. Bernoulli 21(2):781–831

    MathSciNet  MATH  Article  Google Scholar 

  9. Fahrmeir L, Kaufmann H (1987) Regression models for non-stationary categorical time series. J Time Ser Anal 8(2):147–160

    MathSciNet  MATH  Article  Google Scholar 

  10. Fitzmaurice GM, Lipsitz SR (1995) A model for binary time series data with serial odds ratio patterns. J R Stat Soc Ser C 44(1):51–61

    MATH  Google Scholar 

  11. Fokianos K, Kedem B (1998) Prediction and classification of non-stationary categorical time series. J Multivar Anal 67(2):277–296

    MathSciNet  MATH  Article  Google Scholar 

  12. Fokianos K, Kedem B (2003) Regression theory for categorical time series. Stat Sci 18:357–376

    MathSciNet  MATH  Article  Google Scholar 

  13. Giraitis L, Kokoszka P, Leipus R (2000) Stationary arch models: dependence structure and central limit theorem. Econom Theory 16(1):3–22

    MathSciNet  MATH  Article  Google Scholar 

  14. Gómez E, Gómez-Villegas MA, Marín JM (2003) A survey on continuous elliptical vector distributions. Rev Mat Complut 16:345–361

    MathSciNet  MATH  Article  Google Scholar 

  15. Hannan EJ (1970) Multiple time series, vol 38. Wiley, Hoboken

    Google Scholar 

  16. He S, Kedem B (1989) On the Stieltjes–Sheppard orthant probability formula. Tech Rep tr-89-69, Dept. Mathematics, Unvi. Maryland, College Park

  17. Hinich M (1967) Estimation of spectra after hard clipping of gaussian processes. Technometrics 9(3):391–400

    MathSciNet  Google Scholar 

  18. Hosoya Y, Taniguchi M (1982) A central limit theorem for stationary processes and the parameter estimation of linear processes. Ann Stat 10:132–153

    MathSciNet  MATH  Article  Google Scholar 

  19. Ibragimov IA, Rozanov Y (1978) Gaussian random processes, vol 9. Springer, Berlin

    Google Scholar 

  20. Johnson RA, Wichern DW (1988) Applied multivariable statistical analysis, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  21. Kakizawa Y (1996) Discriminant analysis for non-gaussian vector stationary processes. J Nonparametr Stat 7(2):187–203

    MathSciNet  MATH  Article  Google Scholar 

  22. Kakizawa Y (1997) Higher order asymptotic theory for discriminant analysis in Gaussian stationary processes. J Jpn Stat Soc 27(1):19–35

    MathSciNet  MATH  Article  Google Scholar 

  23. Kaufmann H (1987) Regression models for nonstationary categorical time series: asymptotic estimation theory. Ann Stat 15:79–98

    MathSciNet  MATH  Article  Google Scholar 

  24. Kedem B (1994) Time series analysis by higher order crossings. IEEE press, New York

    Google Scholar 

  25. Kedem B, Fokianos K (2002) Regression models for time series analysis. Wiley, New York

    Google Scholar 

  26. Kedem B, Li T (1989) Higher order crossings from a parametric family of linear filters. Tech Rep tr-89-47, Dept. Mathematics, Unvi. Maryland, College Park

  27. Kedem B, Slud E (1982) Time series discrimination by higher order crossings. Ann Stat 10(3):786–794

    MathSciNet  MATH  Article  Google Scholar 

  28. Keenan DM (1982) A time series analysis of binary data. J Am Stat Assoc 77(380):816–821

    MathSciNet  MATH  Article  Google Scholar 

  29. Kley T (2014) Quantile-based spectral analysis. Ph.D. thesis, Ruhr-Universitut Bochum

  30. Li TH (2008) Laplace periodogram for time series analysis. J Am Stat Assoc 103(482):757–768

    MathSciNet  MATH  Article  Google Scholar 

  31. Liggett W Jr (1971) On the asymptotic optimality of spectral analysis for testing hypotheses about time series. Ann Stat 42(4):1348–1358

    MathSciNet  MATH  Article  Google Scholar 

  32. Lomnicki Z, Zaremba S (1955) Some applications of zero-one processes. J R Stat Soc Ser B Stat Methodol 17:243–255

    MathSciNet  MATH  Google Scholar 

  33. Olszewski R T (2001) Generalized feature extraction for structural pattern recognition in time-series datas. Ph.D. thesis, Carnegie Mellon University

  34. Panagiotakis C, Tziritas G (2005) A speech/music discriminator based on RMS and zero-crossings. IEEE Trans Multimed 7(1):155–166

    Article  Google Scholar 

  35. Petrantonakis PC, Hadjileontiadis LJ (2010) Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis. IEEE Trans Affect Comput 1(2):81–97

    Article  Google Scholar 

  36. Petrantonakis PC, Hadjileontiadis LJ (2010) Emotion recognition from eeg using higher order crossings. IEEE Trans Inf Technol Biomed 14(2):186–197

    Article  Google Scholar 

  37. Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332

    MathSciNet  MATH  Article  Google Scholar 

  38. Robinson PM (1991) Automatic frequency domain inference on semiparametric and nonparametric models. Econometrica 59:1329–1363

    MathSciNet  MATH  Article  Google Scholar 

  39. Sakiyama K, Taniguchi M (2004) Discriminant analysis for locally stationary processes. J Multivar Anal 90(2):282–300

    MathSciNet  MATH  Article  Google Scholar 

  40. Shumway R, Unger A (1974) Linear discriminant functions for stationary time series. J Am Stat Assoc 69(348):948–956

    MathSciNet  MATH  Article  Google Scholar 

  41. Tanaka M, Shimizu K (2001) Discrete and continuous expectation formulae for level-crossings, upcrossings and excursions of ellipsoidal processes. Stat Prob Lett 52(3):225–232

    MathSciNet  MATH  Article  Google Scholar 

  42. Taniguchi M (1987) Minimum contrast estimation for spectral densities of stationary processes. J R Stat Soc Ser B Stat Methodol 49:315–325

    MathSciNet  MATH  Google Scholar 

  43. Taniguchi M, Kakizawa Y (2000) Asymptotic theory of statistical inference for time series. Springer, New York

    Google Scholar 

  44. Zhang G, Taniguchi M (1995) Nonparametric approach for discriminant analysis in time series. J Nonparametr Stat 5(1):91–101

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor in chief Professor Hajo Holzmann, the anonymous associate editor, and two referees for their instructive comments and kindness. The first author Y.G. thanks Doctor Fumiya Akashi for his encouragements and comments and was supported by Grant-in-Aid for JSPS Research Fellow Grant Number JP201920060. The second author M.T. was supported by the Research Institute for Science & Engineering of Waseda University and JSPS Grant-in-Aid for Scientific Research (S) Grant Number JP18H05290.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuichi Goto.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research supported by Grant-in-Aid for JSPS Research Fellow Grant Number JP201920060 (Yuichi Goto), and the Research Institute for Science & Engineering of Waseda University and JSPS Grant-in-Aid for Scientific Research (S) Grant Number JP18H05290 (Masanobu Taniguchi)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 56 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goto, Y., Taniguchi, M. Discriminant analysis based on binary time series. Metrika 83, 569–595 (2020). https://doi.org/10.1007/s00184-019-00746-1

Download citation

Keywords

  • Stationary process
  • Spectral density
  • Binary time series
  • Robustness
  • Discriminant analysis
  • Misclassification probability

Mathematics Subject Classification

  • 62H30
  • 62G86