Skip to main content
Log in

Robust estimators for one-shot device testing data under gamma lifetime model with an application to a tumor toxicological data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Due to its flexibility, gamma distribution is commonly used for lifetime data analysis in reliability and survival studies, and especially in one-shot device testing data. In the study of such data, inducing more failures by accelerated life tests is a common practice, to obtain more lifetime information within a relatively short period of time. In this paper, we develop weighted minimum density power divergence estimators, as a natural extension of the classical maximum likelihood estimator, in the analysis of one-shot device testing data, under accelerated life tests based on gamma lifetime distribution. Wald-type test statistics, based on these estimators, are also developed. Through a Monte Carlo simulation study, the suggested estimators and tests are shown to be robust alternatives to the maximum likelihood estimators and the classical Wald tests based on them. Finally, these procedures are applied to a mice tumor toxicological data for illustrative purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balakrishnan N, Ling MH (2012) Multiple-stress model for one-shot device testing data under exponential distribution. IEEE Trans Reliab 61(3):809–821

    Article  Google Scholar 

  • Balakrishnan N, Ling MH (2013) Expectation maximization algorithm for one shot device accelerated life testing with Weibull lifetimes, and variable parameters over stress. IEEE Trans Reliab 62(2):537–551

    Article  Google Scholar 

  • Balakrishnan N, Ling MH (2014) Gamma lifetimes and one-shot device testing analysis. Reliab Eng Syst Saf 126:54–64

    Article  Google Scholar 

  • Balakrishnan N, Castilla E, Martín N, Pardo L (2019) Robust estimators and test-statistics for one-shot device testing under the exponential distribution. IEEE Trans Inf Theory 65(5):3080–3096. https://doi.org/10.1109/tit.2019.2903244

    Article  MathSciNet  MATH  Google Scholar 

  • Basu A, Ghosh A, Mandal A, Martin N, Pardo L (2017) A Wald-type test statistic for testing linear hypothesis in logistic regression models based on minimum density power divergence estimator. Electonic J Stat 11:2741–2772

    Article  MathSciNet  Google Scholar 

  • Fan TH, Balakrishnan N, Chang CC (2009) The Bayesian approach for highly reliable electro-explosive devices using one-shot device testing. J Stat Comput Simul 79(9):1143–1154

    Article  MathSciNet  Google Scholar 

  • Ghosh A, Basu A (2013) Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression. Electron J Stat 7:2420–2456

    Article  MathSciNet  Google Scholar 

  • Heilbron DC (1994) Zero-altered and other regression models for count data with added zeros. Biom J 36:531–547

    Article  Google Scholar 

  • Husak GJ, Michaelsen J, Funk C (2007) Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int J Climatol 27:935–944

    Article  Google Scholar 

  • Kodell RL, Nelson CJ (1980) An illness-death model for the study of the carcinogenic process using survival/sacrifice data. Biometrics 36:267–277

    Article  Google Scholar 

  • Kullback S (1959) Statistics and information theory. Wiley, New York

    MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MathSciNet  Google Scholar 

  • Kwon K, Frangopol DM (2010) Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data. Int J Fatigue 32:1221–1223

    Article  Google Scholar 

  • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34(1):1–14

    Article  Google Scholar 

  • Meeter CA, Meeker WQ (1994) Optimum accelerated life tests with a nonconstant scale parameter. Technometrics 36:71–83

    MATH  Google Scholar 

  • Meeker WQ, Escobar LA, Lu CJ (1998) Accelerated degradation tests: modeling and analysis. Technometrics 40:89–99

    Article  Google Scholar 

  • Pardo L (2006) Statistical inference based on divergence measures. Chapman & Hall/ CRC Press, Boca Raton

    MATH  Google Scholar 

  • Seabom JB (1991) Hypergeometric functions and their applications. Springer, New York

    Google Scholar 

  • Tseng ST, Balakrishnan N, Tsai CC (2009) Optimal step-stress accelerated degradation test plan for gamma degradation processes. IEEE Trans Reliab 58:611–618

    Article  Google Scholar 

  • Warwick J, Jones MC (2005) Choosing a robustness tuning parameter. J Stat Comput Simul 75:581–588

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor, the associate editor, and the referees for their helpful comments and suggestions. This research is partially supported by Grant MTM2015-67057-P and Grant FPU16/03104 from Ministerio de Economia y Competitividad and Ministerio de Educacion, Cultura y Deporte (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Castilla.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs of the main results

Proofs of the main results

1.1 Proof of Theorem 1

From (8), we have

$$\begin{aligned} d_{KL}(\widehat{\varvec{p}},\varvec{p}(\varvec{\theta }))&=\sum _{i=1}^{I}\sum _{j=1}^{2}\frac{n_{ij}}{K}\log \left( \dfrac{\frac{n_{ij} }{K_{i}}}{F_{j}(IT_{i};\,\varvec{x}_i,\varvec{\theta })}\right) \\&=\sum _{i=1}^{I}\sum _{j=1}^{2}\frac{n_{ij}}{K}\log \left( \frac{n_{i}}{K_{i} }\right) -\sum _{i=1}^{I}\sum _{j=1}^{2}\frac{n_{ij}}{K}\log \left( F_{j}(IT_{i};\,\varvec{x}_i,\varvec{\theta })\right) \\&=c-\frac{1}{K}\sum _{i=1}^{I}\left\{ n_{i}\log \left( F(IT_{i};\,\varvec{x}_i,\varvec{\theta })\right) +(K_{i}-n_{i})\log \left( R(IT_{i};\,\varvec{x}_i,\varvec{\theta })\right) \right\} \\&=c-\frac{1}{K}\log \left( \prod _{i=1}^{I}F(IT_{i};\,\varvec{x}_i,\varvec{\theta })^{n_{i}}R^{K_{i}-n_{i}}(IT_{i};\,\varvec{x}_i,\varvec{\theta })\right) \\&=c-\frac{1}{K}\log \mathcal {L}(\varvec{\theta } ) , \end{aligned}$$

where \(c=\sum _{i=1}^{I}\sum _{j=1}^{2}\frac{n_{ij}}{K}\log \left( \frac{n_{i} }{K_{i}}\right) \) does not depend on the vector of parameters \(\varvec{a} \).

1.2 Proof of Theorem 6

Since

$$\begin{aligned} \frac{\partial }{\partial \varvec{\theta }}\sum _{i=1}^{I}\frac{K_{i}}{K}d_{\beta }^{*}(\widehat{\varvec{p}}_{i},\varvec{\pi }_{i}(\varvec{\theta }))&=\sum _{i=1}^{I}\frac{K_{i}}{K}\frac{\partial }{\partial \varvec{\theta } }d_{\beta }^{*}(\widehat{\varvec{p}}_{i},\varvec{\pi }_{i} (\varvec{\theta }))\\ \end{aligned}$$

and

$$\begin{aligned}&\frac{\partial }{\partial \varvec{\theta }}d_{\beta }^{*} (\widehat{\varvec{p}}_{i},\varvec{\pi }_{i}(\varvec{\theta }))\\&\quad =\left( \frac{\partial }{\partial \varvec{\theta }}\pi _{i1}^{\beta +1} (\varvec{\theta })+\frac{\partial }{\partial \varvec{\theta }}\pi _{i2} ^{\beta +1}(\varvec{\theta })\right) -\frac{\beta +1}{\beta }\left( \widehat{p}_{i1}\frac{\partial }{\partial \varvec{\theta }}\pi _{i1}^{\beta }(\varvec{\theta })+\widehat{p}_{i2}\frac{\partial }{\partial \varvec{\theta } }\pi _{i2}^{\beta }(\varvec{\theta })\right) \\&\quad =\left( \beta +1\right) \left( \pi _{i1}^{\beta }(\varvec{\theta } )-\pi _{i2}^{\beta }(\varvec{\theta })-\widehat{p}_{i1}\pi _{i1}^{\beta -1}(\varvec{\theta })+\widehat{p}_{i2}\pi _{i2}^{\beta -1}(\varvec{\theta })\right) \frac{\partial }{\partial \varvec{\theta }}\pi _{i1}(\varvec{\theta })\\&\quad =\left( \beta +1\right) \left( \left( \pi _{i1}(\varvec{\theta })-\widehat{p}_{i1}\right) \pi _{i1}^{\beta -1}(\varvec{\theta })-\left( \pi _{i2}(\varvec{\theta })-\widehat{p}_{i2}\right) \pi _{i2}^{\beta -1}(\varvec{\theta })\right) \frac{\partial }{\partial \varvec{\theta }} \pi _{i1}(\varvec{\theta })\\&\quad =\left( \beta +1\right) \left( \left( \pi _{i1}(\varvec{\theta })-\widehat{p}_{i1}\right) \pi _{i1}^{\beta -1}(\varvec{\theta })+\left( \pi _{i1}(\varvec{\theta })-\widehat{p}_{i1}\right) \pi _{i2}^{\beta -1}(\varvec{\theta })\right) \frac{\partial }{\partial \varvec{\theta }} \pi _{i1}(\varvec{\theta })\\&\quad =\left( \beta +1\right) \left( \pi _{i1}(\varvec{\theta } )-\widehat{p}_{i1}\right) \left( \pi _{i1}^{\beta -1}(\varvec{\theta } )+\pi _{i2}^{\beta -1}(\varvec{\theta })\right) \frac{\partial }{\partial \varvec{\theta }}\pi _{i1}(\varvec{\theta })\\&\quad =\left( \beta +1\right) \left( \pi _{i1}(\varvec{\theta } )-\widehat{p}_{i1}\right) \left( \pi _{i1}^{\beta -1}(\varvec{\theta } )+\pi _{i2}^{\beta -1}(\varvec{\theta })\right) f\left( IT_{i};\,\varvec{x}_i,\varvec{\theta }\right) \frac{\partial f\left( IT_{i};\,\varvec{x}_i,\varvec{\theta }\right) }{\partial \varvec{\theta }}, \end{aligned}$$

we obtain

$$\begin{aligned} \frac{\partial }{\partial \varvec{\theta }}\sum _{i=1}^{I}\frac{K_{i}}{K}d_{\beta }^{*}(\widehat{\varvec{p}}_{i},\varvec{\pi }_{i}(\varvec{\theta }))& = \frac{\beta +1}{K}\sum _{i=1}^{I}\left( K_{i}\pi _{i1}(\varvec{\theta })-n_{i}\right) \left( \pi _{i1}^{\beta -1}(\varvec{\theta })+\pi _{i2}^{\beta -1}(\varvec{\theta })\right) \\&\quad f\left( IT_{i};\,\varvec{x}_i,\varvec{\theta }\right) \frac{\partial f\left( IT_{i};\,\varvec{x}_i,\varvec{\theta }\right) }{\partial \varvec{\theta }}. \end{aligned}$$

In a similar way, we can get the derivative with respect to \(\varvec{b}\), and then, the required results follow.

1.3 Proof of Theorem 7

Let us denote

$$\begin{aligned} \varvec{u}_{ij}(\varvec{\theta })&=\left( \frac{\partial \log \pi _{ij}(\varvec{\theta })}{\partial \varvec{a}},\frac{\partial \log \pi _{ij}(\varvec{\theta })}{\partial \varvec{b}}\right) ^{T}= \left( \frac{1}{\pi _{ij}(\varvec{\theta })}\frac{\partial \pi _{ij}(\varvec{\theta })}{\partial \varvec{a}},\frac{1}{\pi _{ij}(\varvec{\theta })}\frac{\partial \pi _{ij}(\varvec{\theta } )}{\partial \varvec{b}}\right) ^{T}\\&=\left( \frac{(-1)^{j+1}}{\pi _{ij}(\varvec{\theta })}l_{i}\varvec{x} _{i},\frac{(-1)^{j+1}}{\pi _{ij}(\varvec{\theta })}s_{i}\varvec{x} _{i}\right) ^{T}, \end{aligned}$$

with

$$\begin{aligned} l_{i}& = \,\alpha _{i} \left\{ - \Psi \left( \alpha _{i}\right) \pi _{i1}(\varvec{\theta }) +\log \left( \frac{IT_i}{\lambda _{i}}\right) \pi _{i1}(\varvec{\theta })\right. \nonumber \\&\quad \left. -\,\frac{\left( \frac{IT_i}{\lambda _{i}}\right) ^{\alpha _i}}{\alpha _i^2 \Gamma (\alpha _i)} {_2}F_2\left( \alpha _i,\alpha _i;1+\alpha _i,1+\alpha _i;-\frac{IT_i}{\lambda _{i}}\right) \right\} \end{aligned}$$
(27)

and

$$\begin{aligned} s_{i}=-f\left( IT_{i};\,\varvec{x}_i,\varvec{\theta }\right) IT_{i};\, \end{aligned}$$
(28)

see Balakrishnan and Ling (2014) for more details.

Upon using Theorem 3.1 of Ghosh and Basu (2013), we have

$$\begin{aligned} \sqrt{K}\left( \widehat{\varvec{\theta }}_{\beta }-\varvec{\theta } _{0}\right) \overset{\mathcal {L}}{\underset{K\mathcal {\rightarrow } \infty }{\longrightarrow }}\mathcal {N}\left( \varvec{0}_{2J},\varvec{J} _{\beta }^{-1}(\varvec{\theta }_{0})\varvec{K}_{\beta } (\varvec{\theta }_{0})\varvec{J}_{\beta }^{-1}(\varvec{\theta } _{0})\right) , \end{aligned}$$

where

$$\begin{aligned} \varvec{J}_{\beta }(\varvec{\theta })&=\sum _{i=1}^{I} \sum _{j=1}^{2}\frac{K_i}{K}\varvec{u}_{ij}(\varvec{\theta })\varvec{u}_{ij} ^{T}(\varvec{\theta })\pi _{ij}^{\beta +1}(\varvec{\theta }),\\ \varvec{K}_{\beta }(\varvec{\theta })&=\left( \sum _{i=1}^{I}\sum _{j=1}^{2}\frac{K_i}{K}\varvec{u}_{ij}(\varvec{\theta })\varvec{u} _{ij}^{T}(\varvec{\theta })\pi _{ij}^{2\beta +1}(\varvec{\theta } )-\sum _{i=1}^{I}\frac{K_i}{K}\varvec{\xi }_{i,\beta }(\varvec{\theta })\varvec{\xi }_{i,\beta }^{T}(\varvec{\theta })\right) , \end{aligned}$$

with

$$\begin{aligned} \varvec{\xi }_{i,\beta }(\varvec{\theta })&=\sum _{j=1}^{2}\varvec{u} _{ij}(\varvec{\theta })\pi _{ij}^{\beta +1}(\varvec{\theta })\\&=\left( l_{i}\varvec{x}_{i},s_{i}\varvec{x}_{i}\right) ^{T} \sum _{j=1}^{2}(-1)^{j+1}\pi _{ij}^{\beta }(\varvec{\theta }). \end{aligned}$$

Now, for \(\varvec{u}_{ij}(\varvec{\theta })\varvec{u} _{ij}^{T}(\varvec{\theta })\), we have

$$\begin{aligned} \varvec{u}_{ij}(\varvec{\theta })\varvec{u}_{ij}^{T}(\varvec{\theta })=\frac{1}{\pi _{ij}^{2}(\varvec{\theta })}\left( \begin{array} [c]{cc} l_{i}^{2}\varvec{x}_{i}^{T}\varvec{x}_{i} &\quad l_{i}s_{i}\varvec{x} _{i}^{T}\varvec{x}_{i}\\ l_{i}s_{i}\varvec{x}_{i}^{T}\varvec{x}_{i} &\quad s_{i}^{2}\varvec{x} _{i}^{T}\varvec{x}_{i} \end{array} \right) =\frac{1}{\pi _{ij}^{2}(\varvec{\theta })}\varvec{M}_{i}, \end{aligned}$$

with

$$\begin{aligned} \varvec{M}_{i}=\left( \begin{array} [c]{cc} l_{i}^{2}\varvec{x}_{i}^{T}\varvec{x}_{i} &\quad l_{i}s_{i}\varvec{x} _{i}^{T}\varvec{x}_{i}\\ l_{i}s_{i}\varvec{x}_{i}^{T}\varvec{x}_{i} &\quad s_{i}^{2}\varvec{x} _{i}^{T}\varvec{x}_{i} \end{array} \right) . \end{aligned}$$
(29)

It then follows that

$$\begin{aligned} \varvec{J}_{\beta }(\varvec{\theta })&=\sum _{i=1} ^{I}\frac{K_i}{K}\varvec{M}_{i}\sum _{j=1}^{2}\pi _{ij}^{\beta -1}(\varvec{\theta })\\&=\sum _{i=1}^{I}\frac{K_i}{K}\varvec{M}_{i}\left( \pi _{i1}^{\beta -1}(\varvec{\theta })+\pi _{i2}^{\beta -1}(\varvec{\theta })\right) . \end{aligned}$$

In a similar manner,

$$\begin{aligned} \varvec{\xi }_{i,\beta }(\varvec{\theta })\varvec{\xi }_{i,\beta } ^{T}(\varvec{\theta })=\varvec{M}_{i}\left( \sum _{j=1}^{2} (-1)^{j+1}\pi _{ij}^{\beta }(\varvec{\theta })\right) ^{2} \end{aligned}$$

and

$$\begin{aligned} \varvec{K}_{\beta }(\varvec{\theta })=\sum _{i=1} ^{I}\frac{K_i}{K}\varvec{M}_{i}\left( \sum _{j=1}^{2}\pi _{ij}^{2\beta -1} (\varvec{\theta })-\left( \sum _{j=1}^{2}(-1)^{j+1}\pi _{ij}^{\beta }(\varvec{\theta })\right) ^{2}\right) . \end{aligned}$$

Since

$$\begin{aligned} \sum _{j=1}^{2}\pi _{ij}^{2\beta -1}(\varvec{\theta })-\left( \sum _{j=1} ^{2}(-1)^{j+1}\pi _{ij}^{\beta }(\varvec{\theta })\right) ^{2}=\pi _{i1}(\varvec{\theta })\pi _{i2}(\varvec{\theta })\left( \pi _{i1} ^{\beta -1}(\varvec{\theta })+\pi _{i2}^{\beta -1}(\varvec{\theta })\right) ^{2}, \end{aligned}$$

we have

$$\begin{aligned} \varvec{K}_{\beta }(\varvec{\theta })=\sum _{i=1} ^{I}\frac{K_i}{K}\varvec{M}_{i}\pi _{i1}(\varvec{\theta })\pi _{i2}(\varvec{\theta })\left( \pi _{i1}^{\beta -1}(\varvec{\theta })+\pi _{i2}^{\beta -1}(\varvec{\theta })\right) ^{2}. \end{aligned}$$

1.4 Proof of Theorem 9

Let \(\varvec{\theta }_{0}\in \Theta \) be the true value of parameter \( \varvec{\theta }\). It is clear that

$$\begin{aligned} \varvec{m}\left( \widehat{\varvec{\theta }}_{\beta }\right)&= {}\, \varvec{ m}\left( \varvec{\theta }_{0}\right) +\varvec{M}^{T}\left( \widehat{ \varvec{\theta }}_{\beta }\right) \left( \widehat{\varvec{\theta }}_{\beta }- \varvec{\theta }_{0}\right) +o_{p}\left( \left\| \widehat{\varvec{\theta }} _{\beta }-\varvec{\theta }_{0}\right\| \right) \\& = \,\varvec{M}^{T}\left( \widehat{\varvec{\theta }}_{\beta }\right) \left( \widehat{\varvec{\theta }}_{\beta }-\varvec{\theta }_{0}\right) +o_{p}\left( K^{-1/2}\right) . \end{aligned}$$

But, under \(H_{0},\)

$$\begin{aligned} \sqrt{K}\left( \widehat{\varvec{\theta }}_{\beta }-\varvec{\theta }_{0}\right) \underset{K\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }} \mathcal {N}\left( \varvec{0}_{J+1},\varvec{\Sigma }_{\beta }\left( \widehat{\varvec{\theta }}_{\beta }\right) \right) . \end{aligned}$$

Therefore, under \(H_{0},\)

$$\begin{aligned} \sqrt{K}\varvec{m}\left( \widehat{\varvec{\theta }}_{\beta }\right) \underset{K\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }} \mathcal {N}\left( \varvec{0}_{r},\varvec{M}^{T}\left( \varvec{\theta } _{0}\right) \varvec{\Sigma }_{\beta }\left( \widehat{\varvec{\theta }} _{\beta }\right) \varvec{M}\left( \varvec{\theta }_{0}\right) \right) \end{aligned}$$

and taking into account that \(rank(\varvec{M}\left( \varvec{\theta } _{0}\right) )=r\), we get

$$\begin{aligned} K\varvec{m}\left( \widehat{\varvec{\theta }}_{\beta }\right) ^{T}\left( \varvec{M}^{T}\left( \varvec{\theta }_{0}\right) \varvec{\Sigma } _{\beta }\left( \varvec{\theta }_{0}\right) \varvec{M}\left( \varvec{\theta } _{0}\right) \right) ^{-1}\varvec{m}\left( \widehat{\varvec{\theta }} _{\beta }\right) \underset{K\rightarrow \infty }{\overset{\mathcal {L}}{ \longrightarrow }}\chi _{r}^{2}. \end{aligned}$$

But, \(\left( \varvec{M}\left( \widehat{\varvec{\theta }}_{\beta }\right) ^{T}\varvec{\Sigma }_{\beta }\left( \widehat{\varvec{\theta }}_{\beta }\right) \varvec{M}\left( \widehat{\varvec{\theta }}_{\beta }\right) \right) ^{-1}\) is a consistent estimator of \(\left( \varvec{M}\left( \varvec{\theta }_{0}\right) ^{T}\varvec{\Sigma }_{\beta }\left( \varvec{\theta }_{0}\right) \varvec{M}\left( \varvec{\theta }_{0}\right) \right) ^{-1}\). Therefore,

$$\begin{aligned} W_{K}\left( \widehat{\varvec{\theta }}_{\beta }\right) \underset{K\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }}\chi _{r}^{2}. \end{aligned}$$

1.5 Proof of Theorem 10

Under the assumption that

$$\begin{aligned} \widehat{\varvec{\theta }}_{\beta }\underset{K\rightarrow \infty }{\overset{P}{ \longrightarrow }}\varvec{\theta }^{*}, \end{aligned}$$

the asymptotic distribution of \(\ell _{\beta }\left( \widehat{\varvec{\theta }} _{1},\widehat{\varvec{\theta }}_{2}\right) \) coincides with the asymptotic distribution of \(\ell _{\beta }\left( \widehat{\varvec{\theta }}_{1}, \varvec{\theta }^{*}\right) .\) A first-order Taylor expansion of \(\ell _{\beta }\left( \widehat{\varvec{\theta }}_{\beta },\varvec{\theta }\right) \) at \(\widehat{\varvec{\theta }}_{\beta }\), around \(\varvec{\theta }^{*}\), gives

$$\begin{aligned} \left( \ell _{\beta }\left( \widehat{\varvec{\theta }}_{\beta },\varvec{\theta } ^{*}\right) -\ell _{\beta }\left( \varvec{\theta }^{*},\varvec{\theta } ^{*}\right) \right) =\left. \frac{\partial \ell _{\beta }\left( \varvec{\theta },\varvec{\theta }_{*}\right) }{\partial \varvec{\theta }^{T}} \right| _{\varvec{\theta }=\varvec{\theta }_{*}}\left( \widehat{ \varvec{\theta }}_{\beta }-\varvec{\theta }^{*}\right) +o_{p}(K^{-1/2}). \end{aligned}$$

Now, the result follows since

$$\begin{aligned} \sqrt{K}\left( \widehat{\varvec{\theta }}_{\beta }-\varvec{\theta }^{*}\right) \underset{K\rightarrow \infty }{\overset{\mathcal {L}}{ \longrightarrow }}\mathcal {N}\left( \varvec{0}_{J+1},\varvec{\Sigma } _{\beta }\left( \varvec{\theta }^{*}\right) \right) . \end{aligned}$$

1.6 Proof of Theorem 12

A Taylor series expansion of \(\varvec{m}(\widehat{\varvec{\theta }}_{\beta })\) around \(\varvec{\theta }_{n}\) yields

$$\begin{aligned} \varvec{m}(\widehat{\varvec{\theta }}_{\beta })=\varvec{m}(\varvec{ \theta }_{n})+\varvec{M}^{T}(\varvec{\theta }_{n})(\widehat{\varvec{\theta }} _{\beta }-\varvec{\theta }_{n})+o\left( \left\| \widehat{\varvec{\theta }} _{\beta }-\varvec{\theta }_{n}\right\| \right) . \end{aligned}$$

From (23), we have

$$\begin{aligned} \varvec{m}(\widehat{\varvec{\theta }}_{\beta })=K^{-1/2}\varvec{M}^{T}( \varvec{\theta }_{0})\varvec{d}+\varvec{M}^{T}(\varvec{\theta }_{n})( \widehat{\varvec{\theta }}_{\beta }-\varvec{\theta }_{n})+o\left( \left\| \widehat{\varvec{\theta }}_{\beta }-\varvec{\theta }_{n}\right\| \right) +o\left( \left\| \varvec{\theta }_{n}-\varvec{\theta }_{0}\right\| \right) . \end{aligned}$$

As

$$\begin{aligned} \sqrt{K}(\widehat{\varvec{\theta }}_{\beta }-\varvec{\theta }_{n})\underset{ n\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }}\mathcal {N}( \varvec{0}_{J+1},\varvec{\Sigma }_{\beta }(\varvec{\theta }_{0})) \end{aligned}$$

and \(\sqrt{K}\left( o\left( \left\| \widehat{\varvec{\theta }}_{\beta }- \varvec{\theta }_{n}\right\| \right) +o\left( \left\| \varvec{\theta }_{n}- \varvec{\theta }_{0}\right\| \right) \right) =o_{p}\left( 1\right) \), we have

$$\begin{aligned} \sqrt{n}\varvec{m}(\widehat{\varvec{\theta }}_{\beta })\underset{ n\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }}\mathcal {N}( \varvec{M}^{T}(\varvec{\theta }_{0})\,\varvec{d},\varvec{M}^{T}( \varvec{\theta }_{0})\varvec{\Sigma }_{\beta }(\varvec{\theta }_{0}) \varvec{M}(\varvec{\theta }_{0})). \end{aligned}$$

We can observe from the relationship \(\varvec{d}^{*}=\varvec{M}( \varvec{\theta }_{0})^{T}\varvec{d}\), if \(\varvec{m}(\varvec{\theta } _{n})=n^{-1/2}\varvec{d}^{*}\), that

$$\begin{aligned} \sqrt{n}\varvec{m}(\widehat{\varvec{\theta }}_{\beta })\underset{ n\rightarrow \infty }{\overset{\mathcal {L}}{\longrightarrow }}\mathcal {N}( \varvec{d}^{*},\varvec{M}^{T}(\varvec{\theta }_{0})\varvec{ \Sigma }_{\beta }(\varvec{\theta }_{0})\varvec{M}(\varvec{\theta }_{0})). \end{aligned}$$

So, the quadratic form here is

$$\begin{aligned} W_{K}\left( \widehat{\varvec{\theta }}_{\beta }\right) =\varvec{Z}^{T} \varvec{Z} \end{aligned}$$

with

$$\begin{aligned} \varvec{Z}=\sqrt{n}\varvec{m}(\widehat{\varvec{\theta }}_{\beta })\left( \varvec{M}^{T}(\varvec{\theta }_{0})\varvec{\Sigma }_{\beta }( \varvec{\theta }_{0})\varvec{M}(\varvec{\theta }_{0})\right) ^{-1/2} \end{aligned}$$

and

$$\begin{aligned} \varvec{Z}\underset{n\rightarrow \infty }{\overset{\mathcal {L}}{ \longrightarrow }}\mathcal {N}\left( \left( \varvec{M}^{T}(\varvec{\theta } _{0})\varvec{\Sigma }_{\beta }(\varvec{\theta }_{0})\varvec{M}( \varvec{\theta }_{0})\right) ^{-1/2}\varvec{M}(\varvec{\theta }_{0})^{T} \varvec{d},\varvec{I}_{r}\right) , \end{aligned}$$

where \(\varvec{I}_{r}\) is the identity matrix or order r. Hence, the required the result follows immediately, and the non-centrality parameter is

$$\begin{aligned} \varvec{d}^{T}\varvec{M}(\varvec{\theta }_{0})\left( \varvec{M} ^{T}(\varvec{\theta }_{0})\varvec{\Sigma }_{\beta }(\varvec{\theta }_{0}) \varvec{M}(\varvec{\theta }_{0})\right) ^{-1}\varvec{M}(\varvec{\theta } _{0})^{T}\varvec{d}=\varvec{d}^{*T}\left( \varvec{M}^{T}( \varvec{\theta }_{0})\varvec{\Sigma }_{\beta }(\varvec{\theta }_{0}) \varvec{M}(\varvec{\theta }_{0})\right) ^{-1}\varvec{d}^{*}. \end{aligned}$$

1.7 Proof of Theorem 13

The influence function of \(W_K(\widehat{\varvec{\theta }}_{\beta })\), with respect to the \(j_0\)th observation of the \(i_0\)th group of observations, is defined as

$$\begin{aligned}\mathcal {IF}\left( i_{0},j_{0},x,T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }}\right) =\left. \frac{\partial W_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) }{\partial \varepsilon }\right| _{\varepsilon =0^{+}}\end{aligned}$$

where

$$\begin{aligned}&\frac{\partial W_{K}\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) }{\partial \varepsilon }\\&\quad =2\varvec{m}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \left( \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \varvec{\Sigma }\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \varvec{M}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \right) ^{-1}\\&\qquad \times \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \frac{\partial \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) }{\partial \varepsilon }\\&\qquad +\varvec{m}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \frac{\partial }{\partial \varepsilon }\left( \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \varvec{\Sigma }\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \varvec{M}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \right) ^{-1} \\&\qquad \times \varvec{m}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \end{aligned}$$

and

$$\begin{aligned}&\left. \frac{\partial W_{K}\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) }{\partial \varepsilon }\right| _{\varepsilon =0^{+}}\\&\quad =2\varvec{m}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \left( \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \varvec{\Sigma }\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \varvec{M}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \right) ^{-1}\\&\qquad \times \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \mathcal {IF}\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \\&\qquad +\varvec{m}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \left. \frac{\partial }{\partial \varepsilon }\left( \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \varvec{\Sigma }\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \varvec{M}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \right) ^{-1}\right| _{\varepsilon =0^{+}} \\&\qquad \times \varvec{m}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x}\right) \right) \end{aligned}$$

For \(\varvec{\theta }=\varvec{\theta }_0\), \(\varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta }_0,x}\right) =\varvec{\theta }_0\) and \(\varvec{m}^T(\varvec{\theta }_0)=0\). Therefore,

$$\begin{aligned} \mathcal {IF}\left( i_{0},j_{0},x,T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right) =0, \end{aligned}$$

in a similar way, we have

$$\begin{aligned} \mathcal {IF}\left( i_{0},j_{0},\underline{x},T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right) =0 \end{aligned}$$

In order to get the second-order influence function, with respect to the jth observation of the ith group of observation, we must get

$$\begin{aligned} \mathcal {IF}_2\left( i_{0},j_{0},x,T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right) =\left. \frac{\partial ^2}{\partial \varepsilon } W_K(\varvec{F}_{\underline{K}},\varvec{\theta }_0,x,\varepsilon )\right| _{\varepsilon =0^{+}} \end{aligned}$$

We can express

$$\begin{aligned} \frac{\partial ^2 W_K(\varvec{F}_{\underline{K}},\varvec{\theta },x,\varepsilon )}{\partial \varepsilon }&=\varvec{l}(K,\varvec{\theta },x,\varepsilon ) +2\frac{\partial \varvec{U}_\beta (\varvec{F}_{\underline{K}},\varvec{\theta },x,\varepsilon )}{\partial \varepsilon }\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \\&\quad \times \left( \varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \varvec{\Sigma }\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \right. \\&\qquad \left. \varvec{M}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \right) ^{-1}\varvec{M}^T\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \\&\quad \times \frac{\partial \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) }{\partial \varepsilon } \end{aligned}$$

With \(\varvec{l}(K,\varvec{\theta },x,\varepsilon )\), we denote all the terms which contain the expression \(\varvec{m}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta },x,\varepsilon }\right) \right) \), because for \(\varvec{\theta }=\varvec{\theta }_0\) and \(\varepsilon =0\), we have \(\varvec{m}\left( \varvec{U}_{\beta }\left( \varvec{F}_{\underline{K},\varvec{\theta }_0,x}\right) \right) =0\). Therefore, we have

$$\begin{aligned} \mathcal {IF}_2\left( i_{0},j_{0},x,T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right)&=\left. \frac{\partial ^2}{\partial \varepsilon } W_K(\varvec{F}_{\underline{K}},\varvec{\theta }_0,x,\varepsilon )\right| _{\varepsilon =0^{+}}\\&=2\mathcal {IF}^T\left( i_{0},j_{0},x,T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right) \varvec{M}(\varvec{\theta }_0)\left( \varvec{M}^T(\varvec{\theta }_0)\varvec{\Sigma }(\varvec{\theta }_0)\varvec{M}(\varvec{\theta }_0) \right) ^{-1}\\&\quad \times \varvec{M}^T(\varvec{\theta }_0)\mathcal {IF}\left( i_{0},j_{0},x,T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right) . \end{aligned}$$

In a similar way, we obtain the expression of \(\mathcal {IF}_2\left( \underline{x},T_{\beta },\varvec{F}_{\underline{K},\varvec{\theta }_0}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, N., Castilla, E., Martín, N. et al. Robust estimators for one-shot device testing data under gamma lifetime model with an application to a tumor toxicological data. Metrika 82, 991–1019 (2019). https://doi.org/10.1007/s00184-019-00718-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00718-5

Keywords

Navigation