, Volume 80, Issue 1, pp 115–131 | Cite as

Robust Dickey–Fuller tests based on ranks for time series with additive outliers

  • V. A. ReisenEmail author
  • C. Lévy-Leduc
  • M. Bourguignon
  • H. Boistard


In this paper the unit root tests proposed by Dickey and Fuller (DF) and their rank counterpart suggested by Breitung and Gouriéroux (J Econom 81(1): 7–27, 1997) (BG) are analytically investigated under the presence of additive outlier (AO) contaminations. The results show that the limiting distribution of the former test is outlier dependent, while the latter one is outlier free. The finite sample size properties of these tests are also investigated under different scenarios of testing contaminated unit root processes. In the empirical study, the alternative DF rank test suggested in Granger and Hallman (J Time Ser Anal 12(3): 207–224, 1991) (GH) is also considered. In Fotopoulos and Ahn (J Time Ser Anal 24(6): 647–662, 2003), these unit root rank tests were analytically and empirically investigated and compared to the DF test, but with outlier-free processes. Thus, the results provided in this paper complement the studies of the previous works, but in the context of time series with additive outliers. Equivalently to DF and Granger and Hallman (J Time Ser Anal 12(3): 207–224, 1991) unit root tests, the BG test shows to be sensitive to AO contaminations, but with less severity. In practical situations where there would be a suspicion of additive outlier, the general conclusion is that the DF and Granger and Hallman (J Time Ser Anal 12(3): 207–224, 1991) unit root tests should be avoided, however, the BG approach can still be used.


Time series Robust tests Ranks Outliers Unit root 



V. A. Reisen and M. Bourguignon gratefully acknowledge partial financial support from CAPES-CNPq/Brazil and FAPES-ES-Brazil. The authors would like to thank the referee for his valuable suggestions.


  1. Aparicio F, Escribano A, Sipols AE (2006) Range unit-root (rur) tests: robust against nonlinearities, error distributions, structural breaks and outliers. J Time Ser Anal 27(4):545–576MathSciNetCrossRefzbMATHGoogle Scholar
  2. Astill S, Harvey D, Taylor AMR (2013) A bootstrap test for additive outliers in non-stationary time series. J Time Ser Anal 34:454–465MathSciNetCrossRefzbMATHGoogle Scholar
  3. Billingsley P (1968) Convergence of probability measures. Wiley, New YorkzbMATHGoogle Scholar
  4. Borovkova S, Burton R, Dehling H (2001) Limit theorems for functionals of mixing processes with applications to \(U\)-statistics and dimension estimation. Trans Am Math Soc 353(11):4261–4318MathSciNetCrossRefzbMATHGoogle Scholar
  5. Breitung J (1994) Some simple tests of the moving-average unit root hypothesis. J Time Ser Anal 15(4):351–370MathSciNetCrossRefzbMATHGoogle Scholar
  6. Breitung J, Gouriéroux C (1997) Rank tests for unit roots. J Econom 81(1):7–27MathSciNetCrossRefzbMATHGoogle Scholar
  7. Breitung J, Hassler U (2002) Inference on the cointegration rank in fractionally integrated processes. J Econom 110(2):167–185MathSciNetCrossRefzbMATHGoogle Scholar
  8. Carstensen K (2003) The finite-sample performance of robust unit root tests. Stat Pap 44:469–482MathSciNetCrossRefzbMATHGoogle Scholar
  9. Chan W-S (1995) Understanding the effect of time series outliers on sample autocorrelations. Test 4(1):179–186MathSciNetCrossRefzbMATHGoogle Scholar
  10. Chen C, Liu L-M (1993) Joint estimation of model parameters and outlier effects in time series. J Am Stat Assoc 88(421):284–297zbMATHGoogle Scholar
  11. Demetrescu M, Kuzin V, Hassler U (2008) Long memory testing in the time domain. Econom Theory 24(01):176–215MathSciNetCrossRefzbMATHGoogle Scholar
  12. Denby L, Martin RD (1979) Robust estimation of the first-order autoregressive parameter. J Am Stat Assoc 74(365):140–146CrossRefzbMATHGoogle Scholar
  13. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366, part 1):427–431MathSciNetCrossRefzbMATHGoogle Scholar
  14. Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49(4):1057–1072MathSciNetCrossRefzbMATHGoogle Scholar
  15. Elliot G, Rothenberg T, Stock J (1996) Efficient tests for an autoregressive unit root. Econometrica 64:813–836MathSciNetCrossRefzbMATHGoogle Scholar
  16. Fotopoulos SB, Ahn SK (2003) Rank based Dickey–Fuller test statistics. J Time Ser Anal 24(6):647–662MathSciNetCrossRefzbMATHGoogle Scholar
  17. Franco GC, Reisen VA (2007) Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes. Phys A Stat Mech Appl 375(2):546–562CrossRefGoogle Scholar
  18. Franses PH, Haldrup N (1994) The effects of additive outliers on tests for unit roots and cointegration. J Bus Econ Stat 12:471–478MathSciNetGoogle Scholar
  19. Granger CWJ, Hallman J (1991) Nonlinear transformations of integrated time series. J Time Ser Anal 12(3):207–224MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hallin M, van den Akker R, Werker BJ (2011) A class of simple distribution-free rank-based unit root tests. J Econom 163(2):200–214MathSciNetCrossRefzbMATHGoogle Scholar
  21. Hamilton JD (1994) Time series analysis. Princeton University Press, PrincetonzbMATHGoogle Scholar
  22. Hassler U, Wolters J (1994) On the power of unit root tests against fractional alternatives. Econ Lett 45(1):1–5CrossRefzbMATHGoogle Scholar
  23. Kramer W (1998) Fractional integration and the augmented dickey–fuller test. Econ Lett 61(3):269–272MathSciNetCrossRefzbMATHGoogle Scholar
  24. Lévy-Leduc C, Boistard H, Moulines E, Taqqu M, Reisen V (2011a) Asymptotic properties of \(U\)-processes under long-range dependence. Ann Stat 39(3):1399–1426MathSciNetCrossRefzbMATHGoogle Scholar
  25. Lévy-Leduc C, Boistard H, Moulines E, Taqqu MS, Reisen VA (2011b) Robust estimation of the scale and of the autocovariance function of gaussian short- and long-range dependent processes. J Time Ser Anal 32:135–156MathSciNetCrossRefzbMATHGoogle Scholar
  26. Lucas A (1995) An outliers robust unit root test with an application to the extended Nelson-Plosser data. J Econom 66:153–173CrossRefzbMATHGoogle Scholar
  27. Martin RD, Yohai VJ (1986) Influence functionals for time series. Ann Stat 14(3):781–855 (with discussion)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Molinares FF, Reisen VA, Cribari-Neto F (2009) Robust estimation in long-memory processes under additive outliers. J Stat Plan Inference 139(8):2511–2525MathSciNetCrossRefzbMATHGoogle Scholar
  29. Palm FC, Smeekes S, Urbain J-P (2008) Bootstrap unit-root tests: comparison and extensions. J Time Ser Anal 29(2):371–401MathSciNetCrossRefzbMATHGoogle Scholar
  30. Reisen VA, Molinares FF (2012) Robust estimation in time series with short and long-memry property. Ann Math Inform 39:207–224MathSciNetzbMATHGoogle Scholar
  31. Robinson PM (1991) Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J Econom 47(1):67–84MathSciNetCrossRefzbMATHGoogle Scholar
  32. Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3):599–607MathSciNetCrossRefzbMATHGoogle Scholar
  33. Wang G (2011) Unit root testing in the presence of arfima–garch errors. Appl Stoch Models Bus Ind 27:421–433MathSciNetCrossRefGoogle Scholar
  34. Westerlund J (2014) On the asymptotic distribution of the dickey fuller-gls test statistic. Statistics 48(6):1233–1253MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • V. A. Reisen
    • 1
    Email author
  • C. Lévy-Leduc
    • 2
  • M. Bourguignon
    • 3
  • H. Boistard
    • 4
  1. 1.Departamento de EstatísticaUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.AgroParisTech/INRA MIA 518ParisFrance
  3. 3.Departamento de EstatísticaUniversidade Federal do Rio Grande do NorteNatalBrazil
  4. 4.Toulouse School of Economics, GREMAQUniversité Toulouse 1ToulouseFrance

Personalised recommendations