Skip to main content
Log in

Multivariate Poisson distributions associated with Boolean models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We consider a d-dimensional Boolean model \(\varXi = (\varXi _1+X_1)\cup (\varXi _2+X_2)\cup \cdots \) generated by a Poisson point process \(\{X_i, i\ge 1\}\) with intensity measure \(\varLambda \) and a sequence \(\{\varXi _i, i\ge 1\}\) of independent copies of some random compact set \(\varXi _0\,\). Given compact sets \(K_1,\ldots ,K_{\ell }\), we show that the discrete random vector \((N(K_1),\ldots ,N(K_\ell ))\), where \(N(K_j)\) equals the number of shifted sets \(\varXi _i+X_i\) hitting \(K_j\), obeys an \(\ell \)-variate Poisson distribution with \(2^{\ell }-1\) parameters. We obtain explicit formulae for all these parameters which can be estimated consistently from an observation of the union set \(\varXi \) in some unboundedly expanding window \(W_n\) (as \(n \rightarrow \infty \)) provided that the Boolean model is stationary. Some of these results can be extended to unions of Poisson k-cylinders for \(1\le k < d\) and more general set-valued functionals of independently marked Poisson processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Böhm S, Heinrich L, Schmidt V (2004) Asymptotic properties of estimators for the volume fractions of jointly stationary random sets. Stat Neerl 58(4):388–406

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Dwass M, Teicher H (1957) On infinitely divisible random vectors. Ann Math Stat 28(2):461–470

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P (1988) Introduction to the theory of coverage processes. Wiley, New York

    MATH  Google Scholar 

  • Heinrich L (1992) On existence and mixing properties of germ-grain models. Statistics 23(3):271–286

  • Heinrich L (2005) Large deviations of the empirical volume fraction for stationary Poisson grain models. Ann Appl Probab 15(1A):392–420

  • Heinrich L, Molchanov IS (1999) Central limit theorem for a class of random measures associated with germ-grain models. Adv Appl Probab 31(2):283–314

    Article  MathSciNet  MATH  Google Scholar 

  • Heinrich L, Spiess M (2013) Central limit theorems for volume and surface content of stationary Poisson cylinder processes in expanding domains. Adv Appl Probab 45(2):312–331

  • Johnson NL, Kotz S, Balakrishnan N (1997) Discrete multivariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Kawamura K (1979) The structure of multivariate Poisson distribution. Kodai Math J 2(3):337–345

    Article  MathSciNet  MATH  Google Scholar 

  • Kawamura K (1987) Calculation of density for the multivariate Poisson distribution. Kodai Math J 10(2):231–241

    Article  MathSciNet  MATH  Google Scholar 

  • Matheron G (1975) Random sets and integral geometry. Wiley, New York

    MATH  Google Scholar 

  • Molchanov IS (1997) Statistics of the Boolean model for practitioners and mathematicians. Wiley, Chichester

    MATH  Google Scholar 

  • Nguyen XX, Zessin H (1979) Ergodic theorems for spatial processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 48(2):133–158

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt V, Spodarev E (2005) Joint estimators for the specific intrinsic volumes of stationary random sets. Stoch Process Their Appl 115(6):959–981

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider R, Weil W (2008) Stochastic and integral geometry. Springer, Berlin

    Book  MATH  Google Scholar 

  • Spiess M, Spodarev E (2011) Anisotropic Poisson processes of cylinders. Methodol Comput Appl Probab 13(4):801–819

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Heinrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bräu, C., Heinrich, L. Multivariate Poisson distributions associated with Boolean models. Metrika 79, 749–761 (2016). https://doi.org/10.1007/s00184-016-0576-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-016-0576-x

Keywords

Mathematics Subject Classification

Navigation