Metrika

, Volume 76, Issue 6, pp 733–764 | Cite as

Local block bootstrap inference for trending time series

  • Arif Dowla
  • Efstathios Paparoditis
  • Dimitris N. Politis
Article
  • 184 Downloads

Abstract

Resampling for stationary sequences has been well studied in the last couple of decades. In the paper at hand, we focus on nonstationary time series data where the nonstationarity is due to a slowly-changing deterministic trend. We show that the local block bootstrap methodology is appropriate for inference under this locally stationary setting without the need of detrending the data. We prove the asymptotic consistency of the local block bootstrap in the smooth trend model, and complement the theoretical results by a finite-sample simulation.

Keywords

Bootstrap Dependent data Kernel smoothing Local stationarity Regression 

References

  1. Altman NS (1990) Kernel smoothing of data with correlated errors. J Am Stat Assoc 85:749–759MathSciNetCrossRefGoogle Scholar
  2. Bühlmann P (1998) Sieve bootstrap for smoothing in nonstationary time series. Ann Stat 26(1):48–83MATHCrossRefGoogle Scholar
  3. Dahlhaus R (1996) On the Kullback-Leibler information divergence of locally stationary processes. Stochastic Proc Appl 62:139–168MathSciNetMATHCrossRefGoogle Scholar
  4. Dahlhaus R (1997) Fitting time series models to nonstationary processes. Ann Stat 25:1–37MathSciNetMATHCrossRefGoogle Scholar
  5. Dowla A, Paparoditis E, Politis DN (2003) Locally stationary processes and the Local Block Bootstrap. In: Akritas MG, Politis DN (eds) Recent advances and trends in nonparametric statistics. Elsevier, North Holland, pp 437–444CrossRefGoogle Scholar
  6. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26MathSciNetMATHCrossRefGoogle Scholar
  7. Gasser T, Müller HG (1984) Kernel estimation of regression functions. In: Rosenblatt M (ed) Smoothing techniques for curve estimation (Gasser T). Springer, BerlinGoogle Scholar
  8. Hall P, Hart JD (1990) Nonparametric regression with long-range dependence. Stochastic Proc Appl 36:339–351MathSciNetMATHCrossRefGoogle Scholar
  9. Hall P, Horowitz JL, Jing BY (1995) On blocking rules for the bootstrap with dependent data. Biometrika 50:561–574MathSciNetCrossRefGoogle Scholar
  10. Hart JD (1991) Kernel regression estimation with time series errors. J R Stat Soc B 53:173–187MATHGoogle Scholar
  11. Ibragimov IA, Linnik YU (1971) Independent and stationary sequences of random variables. Wolters-Noordhoff, GroningenMATHGoogle Scholar
  12. Kreiss JP, Paparoditis E (2011) Bootstrap for dependent data: a review. J Korean Stat Soc 40:357–378MathSciNetCrossRefGoogle Scholar
  13. Künsch HR (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17:1217–1241MATHCrossRefGoogle Scholar
  14. Lahiri SN (2003) Resampling methods for dependent data. Springer, New YorkMATHCrossRefGoogle Scholar
  15. Liu RY, Singh K (1992) Moving blocks jacknife and bootstrap capture weak dependence. In: Raoul LePage, Lynne Billard (eds) Exploring the limits of the bootstrap. Wiley, pp 225–248Google Scholar
  16. Nadaraya EA (1964) On estimating regression. Theor Prob Appl 10:186–190CrossRefGoogle Scholar
  17. Paparoditis E, Politis DN (2002) Local block bootstrap. C R Acad Sci Paris I 335:959–962MathSciNetMATHCrossRefGoogle Scholar
  18. Politis DN (1998) Computer-intensive methods in statistical analysis. IEEE Signal Proc Mag 15(1):39–55CrossRefGoogle Scholar
  19. Romano JP, Thombs LA (1996) Inference form autocorrelations under weak assumptions. J Am Stat Assoc 91:590–600MathSciNetMATHCrossRefGoogle Scholar
  20. Roussas GG (1990) Nonparametric regression estimation under mixing conditions. Stochastic Proc Appl 36:107–116MathSciNetMATHCrossRefGoogle Scholar
  21. Roussas GG, Tran LT, Ioannides DA (1992) Fixed design regression for time series: Asymptotic normality. J Multiv Anal 40:262–291MathSciNetMATHCrossRefGoogle Scholar
  22. Watson GS (1964) Smooth regression analysis. Sankhyā Ser A 26:359–372Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arif Dowla
    • 1
  • Efstathios Paparoditis
    • 2
  • Dimitris N. Politis
    • 3
  1. 1.Stochastic Logic Ltd.DhakaBangladesh
  2. 2.Department of Mathematics and StatisticsUniversity of Cyprus NicosiaCyprus
  3. 3.Department of MathematicsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations