Beer G (1993) Topologies on closed and closed convex sets. Kluwer, Dordrecht
MATH
Google Scholar
Birkhoff G (1957) Extensions of Jentzsch’s theorem. Trans Am Math Soc 85(1): 219–227
MathSciNet
MATH
Google Scholar
Crossman RJ, Škulj D (2010) Imprecise Markov chains with absorption. Int J Approx Reason 51: 1085–1099. doi:10.1016/j.ijar.2010.08.008
MATH
Article
Google Scholar
Crossman RJ, Coolen-Schrijner P, Coolen FPA (2009a) Time-homogeneous birth-death processes with probability intervals and absorbing state. J Stat Theory Practice 3(1): 103–118
MathSciNet
MATH
Article
Google Scholar
Crossman RJ, Coolen-Schrijner P, Škulj D, Coolen FPA (2009b) Imprecise Markov chains with an absorbing state. In: Augustin T, Coolen FPA, Moral S, Troffaes MCM (eds) ISIPTA’09: proceedings of the sixth international symposium on imprecise probability: theories and applications, SIPTA, Durham, UK, pp 119–128
Darroch JN, Seneta E (1965) On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J Appl Probab 2(1):88–100, http://www.jstor.org/stable/3211876
Google Scholar
de Campos LD, Huete J, Moral S (1994) Probability intervals: a tool for uncertain reasoning. Int J Uncertain Fuzz Knowl Based Syst 2(2): 167–196
MATH
Article
Google Scholar
De Cooman G, Hermans F, Quaeghebeur E (2009) Imprecise Markov chains and their limit behavior. Probab Eng Inform Sci 23(4): 597–635. doi:10.1017/S0269964809990039
MathSciNet
MATH
Article
Google Scholar
Dobrushin R (1956) Central limit theorem for non-stationary Markov chains, I, II. Theory Probab Appl 1(4): 329–383
Article
Google Scholar
Dunford N, Schwartz J (1988) Linear operators. Part I: general theory. Wiley, New York
MATH
Google Scholar
Fan K (1953) Minimax theorems. Proc Natl Acad Sci USA 39: 42–47
MATH
Article
Google Scholar
Hable R (2009) Data-based decisions under complex uncertainty. PhD thesis, Ludwig-Maximilians-Universität (LMU) Munich, http://edoc.ub.uni-muenchen.de/9874/
Hable R (2010) Minimum distance estimation in imprecise probability models. J Stat Plan Inference 140: 461–479
MathSciNet
MATH
Article
Google Scholar
Harmanec D (2002) Generalizing Markov decision processes to imprecise probabilities. J Stat Plan Inference 105: 199–213
MathSciNet
MATH
Article
Google Scholar
Hartfiel D (1998) Markov set-chains. Springer, Berlin
MATH
Google Scholar
Hartfiel D, Rothblum U (1998) Convergence of inhomogenous products of matrices and coefficients of ergodicity. Linear Algebra Appl 277: 1–9
MathSciNet
MATH
Article
Google Scholar
Hartfiel D, Seneta E (1994) On the theory of Markov set-chains. Adv Appl Probab 26(4): 947–964
MathSciNet
MATH
Article
Google Scholar
Holmes RB (1975) Geometric functional analysis and its applications. Springer, Berlin
MATH
Book
Google Scholar
Itoh H, Nakamura K (2007) Partially observable Markov decision processes with imprecise parameters. Artif Intell 171(8–9): 453–490
MathSciNet
MATH
Article
Google Scholar
Kozine I, Utkin L (2002) Interval-valued finite Markov chains. Reliable Comput 8(2): 97–113
MathSciNet
MATH
Article
Google Scholar
Nilim A, Ghaoui LE (2005) Robust control of Markov decision processes with uncertain transition matrices. Oper Res 53: 780–798
MathSciNet
MATH
Article
Google Scholar
Paz A (1970) Ergodic theorems for infinite probabilistic tables. Ann Math Stat 41(2): 539–550
MathSciNet
MATH
Article
Google Scholar
Satia J, Lave R (1973) Markovian decision processes with uncertain transition probabilities. Oper Res 21(3): 728–740
MathSciNet
MATH
Article
Google Scholar
Seneta E (1979) Coefficients of ergodicity—structure and applications. Adv Appl Probab 11(2): 270–271
MathSciNet
Article
Google Scholar
Seneta E (2006) Non-negative matrices and Markov chains. Springer, Berlin
MATH
Google Scholar
Škulj D (2006) Finite discrete time Markov chains with interval probabilities. In: Lawry J, Miranda E, Bugarín A, Li S, Gil MA, Grzegorzewski P, Hryniewicz O (eds) SMPS. Advances in soft computing. Springer, Berlin, vol 37, pp 299–306
Škulj D (2007) Regular finite Markov chains with interval probabilities. In: De Cooman G, Zaffalon M, Vejnarová J (eds) ISIPTA’07—proceedings of the fifth international symposium on imprecise probability: theories and applications, SIPTA, pp 405–413
Škulj D (2009) Discrete time Markov chains with interval probabilities. Int J Approx Reason 50(8): 1314–1329. doi:10.1016/j.ijar.2009.06.007
MATH
Article
Google Scholar
Škulj D, Hable R (2009) Coefficients of ergodicity for imprecise Markov chains. In: Augustin T, Coolen FPA, Moral S, Troffaes MCM (eds) ISIPTA’09: proceedings of the sixth international symposium on imprecise probability: theories and applications, SIPTA, Durham, UK, pp 377–386
Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London
MATH
Google Scholar
Walley P (2000) Towards a unified theory of imprecise probability. Int J Approx Reason 24: 125–148
MathSciNet
MATH
Article
Google Scholar
Weichselberger K (2001) Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung. I: Intervallwahrscheinlichkeit als umfassendes Konzept. Physica-Verlag, Heidelberg
MATH
Book
Google Scholar
White C, Eldeib H (1994) Markov decision processes with imprecise transition probabilities. Oper Res 42(4): 739–749
MathSciNet
MATH
Article
Google Scholar