Skip to main content
Log in

A Nonclassical Law of the Iterated Logarithm for Functions of Positively Associated Random Variables

  • Original Article
  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Let \(\{X_{n}; n\geq 1\}\) be a sequence of stationary positively associated random variables and a sequence of positive constants \(\{b(n); n\geq1\}\) be monotonically approaching infinity and be not asymptotically equivalent to loglog n. Under some suitable conditions, a nonclassical law of the iterated logarithm is investigated, i.e.

$$\limsup_{n\rightarrow\infty}\frac{\sum_{i=1}^{n}[f(X_{i})-E f(X_{i})]}{\sqrt{2nb(n)}}=\sigma_{f}\hspace{0.3cm} a.s., $$

where (f) is a real function and \(\sigma_{f}^{2}=Var(f(X_{1}))+2\sum_{j=2}^{\infty}Cov(f(X_{1}), f(X_{j}))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balan RM (2005) A strong invariance principle for associated random fields. Ann Probab 33:823–840

    Article  MATH  MathSciNet  Google Scholar 

  • Birkel T (1988a) Moment bounds for associated sequences. Ann Probab 16:1184–1193

    MathSciNet  Google Scholar 

  • Birkel T (1988b) On the convergence rate in the central limit theorem for associated processes. Ann Probab 16:1685–1698

    MathSciNet  Google Scholar 

  • Burton RM, Dabrowski AR, Dehling H (1986) An invariance principle for weakly associated random vectors. Stochastic Process Appl 23:301–306

    Article  MATH  MathSciNet  Google Scholar 

  • Cai Z, Roussas GG (1999a). Weak convergence for a smooth estimator of a distribution function under association. Stochastic Anal Appl 17:145–168

    MathSciNet  Google Scholar 

  • Cai Z, Roussas GG (1999b) Berry–Esseen bounds for smooth estimator of a distribution function under association. J Nonparametric Statist 10:79–106

    MathSciNet  Google Scholar 

  • Dabrowski AR, Dehling H (1988) A Berry–Esseen theorem and a functional law of the iterated logrithm for weakly associated random vectors. Stochastic Process Appl 30:277–289

    Article  MATH  MathSciNet  Google Scholar 

  • Esary J, Proschan F, Walkup D (1967) Association of random variables with applications. Ann Math Statist 38:1466–1474

    MATH  MathSciNet  Google Scholar 

  • Huang W (2004) A nonclassical law of the iterated logarithm for functions of negatively associated random variables. Stochastic Anal Appl 22:657–678

    Article  MATH  MathSciNet  Google Scholar 

  • Kesten H (1972) Sums of independent random variables-without moment conditions. Ann Math Statist 43:701–732

    MATH  MathSciNet  Google Scholar 

  • Klesov O, Rosalsky A (2001) A nonclassical law of the iterated logarithm for i.i.d. square integrable random variables. Stochastic Anal Appl 19:627–641

    Article  MATH  MathSciNet  Google Scholar 

  • Lin ZY (1983) On generalizations of Berry–Esseen inequality for U-statistics. Acta Math Applica Sinica (in Chinese) 6:468–475

    MATH  Google Scholar 

  • Newman CM, Wright AL (1981) An invariance principle for certain dependent sequences. Ann Probab 9:671–675

    MATH  MathSciNet  Google Scholar 

  • Peligrad M, Shao QM (1995) Estimation of the variance of partial sums for (ρ)-mixing random variables. J Multivariate Anal 52:140–157

    Article  MATH  MathSciNet  Google Scholar 

  • Peligrad M, Suresh R (1995) Estimation of variance of partial sums of an associated sequence of random variables. Stochastic Process Appl 56:307–319

    Article  MATH  MathSciNet  Google Scholar 

  • Petrov VV (1975) Sums of independent random variables. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Prakasa Rao BLS (2002) Hajeck-Renyi-type inequality for associated sequences. Statist Probab Lett 57:139–143

    Article  MATH  MathSciNet  Google Scholar 

  • Rosalsky A (1981) A generalization of the iterated logarithm law for weighted sums with infinite variance. Z Wahrsch Verw Gebiete 58:351–372

    Article  MATH  MathSciNet  Google Scholar 

  • Wang Q, Lin YX, Gulati CM (2003) Strong approximation for long memory processes with applications. J Theor Probab 16:377–389

    Article  MATH  MathSciNet  Google Scholar 

  • Wood TE (1983) A Berry–Esseen theorem for associated random variables. Ann Probab 11:1042–1047

    MATH  MathSciNet  Google Scholar 

  • Yu H (1993) A Glivenko centelli lemma and weak convergence for empirical processes of associated sequences. Probab Theory Related Fields 95:357–370

    Article  MATH  MathSciNet  Google Scholar 

  • Yu H (1996) An strong invariance principle for associated sequences. Ann Probab 24:2079–2097

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang LX (2001) The weak convergence for functions of negatively associated random variables. J Multivariate Anal 78:272–298

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JF., Zhang, LX. A Nonclassical Law of the Iterated Logarithm for Functions of Positively Associated Random Variables. Metrika 64, 361–378 (2006). https://doi.org/10.1007/s00184-006-0054-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-006-0054-y

Keywords

Mathematical Subject Classification

Navigation