Barvinok AI (1994). A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math Oper Res 19(4): 769–779
Article
Google Scholar
Barvinok A and Woods K (2003). Short rational generating functions for lattice point problems. J Am Math Soc 16(4): 957–979
Article
Google Scholar
Beck M, Robins S (2007) Computing the continuous discretely. Integer-point enumeration in polyhedra. Undergraduate texts in mathematics, vol xviii. Springer, New York
Carreras F and Freixas J (1996). Complete simple games. Math Soc Sci 32: 139–155
Article
Google Scholar
De Loera JA (2005). The many aspects of counting lattice points in polytopes. Math Semesterber 52(2): 175–195
Article
Google Scholar
De Loera JA, Hemmecke R, Tauzer J and Yoshida R (2005). Effective lattice point counting in rational convex polytopes. J Symb Comput 38(4): 1273–1302
Article
Google Scholar
Deĭneko VG and Woeginger GJ (2006). On the dimension of simple monotonic games. Eur J Oper Res 170(1): 315–318
Article
Google Scholar
Ehrhart E (1977) Polynômes arithmétiques et méthode des polyedres en combinatoire. International series of numerical mathematics, vol 35. Birkhäuser Verlag, Basel
Engel K (1997). Sperner theory. Encyclopedia of mathematics and its applications, vol 65. Cambridge University Press, Cambridge
Google Scholar
Fishburn PC and Brams SJ (1996). Minimal winning coalitions in weighted-majority voting games. Soc Choice Welf 13: 397–417
Article
Google Scholar
Freixas J (1997). Different ways to represent weighted majority games. Top 5(2): 201–211
Article
Google Scholar
Freixas J (2007). Bounds for Owen’s multilinear extension. J Appl Probab 44: 852–864
Article
Google Scholar
Freixas J, Kurz S (submitted) On minimal integer representations of weighted voting games
Freixas J and Molinero X (2009). On the existence of minimum integer representation for weighted voting systems. Ann Oper Res 166: 243–260
Article
Google Scholar
Freixas J and Molinero X (2010). Weighted games without a unique minimal representation in integers. Optim Methods Softw 25: 203–215
Article
Google Scholar
Freixas J, Molinero X (To appear) Complete voting systems with two classes of voters: weightedness and counting. Ann Oper Res 193(1): 273–289. doi:10.1007/s10479-011-0863-x
Freixas J and Puente MA (2008). Dimension of complete simple games with minimum. Eur J Oper Res 188(2): 555–568
Article
Google Scholar
Freixas J and Zwicker WS (2009). Anonymous yes–no voting with abstention and multiple levels of approval. Games Econ Behav 67(2): 428–444
Article
Google Scholar
Freixas J, Molinero X, Olsen M and Serna M (2008). The complexity of testing properties of simple games. RAIRO-Oper Res 45(4): 295–314 doi:10.1051/ro/2011115
Article
Google Scholar
Freixas J, Molinero X, Roura S (2009) A Fibonacci sequence for linear structures with two types of components. http://arxiv.org/abs/arxiv:0907.3853. Accessed 02 Feb 2012
Gehrlein WV (2002). Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic. Soc Choice Welf 19(3): 503–512
Article
Google Scholar
Gehrlein WV (2005). Probabilities of election outcomes with two parameters: the relative impact of unifying and polarizing candidates. Rev Econ Des 9(4): 317–336
Google Scholar
Huang HC and Chua VCH (2000). Analytical representation of probabilities under the IAC condition. Soc Choice Welf 17(1): 143–155
Article
Google Scholar
Isbell JR (1956). A class of majority games. Q J Math 7: 183–187
Article
Google Scholar
Kilibarda G and Jovović V (2003). On the number of monotone Boolean functions with fixed number of lower units. Intellektualnye sistemy 7: 193–217 (in Russian)
Google Scholar
Kilibarda G, Jovović V (2007) Antichains of multisets. J Integer Seq 7:Article 04.1.5
Kisielewicz A (1988). A solution of Dedekind’s problem on the number of isotone Boolean functions. J Reine Angew Math 386: 139–144
Google Scholar
Koch T (2004) Rapid mathematical programming. PhD Thesis, Technische Universität Berlin
Korshunov AD (2003). Monotone Boolean functions. Russ Math Surv 58(5): 929–1001 doi:10.1070/RM2003v058n05ABEH000667
Article
Google Scholar
Krohn I and Sudhölter P (1995). Directed and weighted majority games. Math Methods Oper Res 42(2): 189–216 doi:10.1007/BF01415753
Article
Google Scholar
Lenstra HW (1983). Integer programming with a fixed number of variables. Math Oper Res 8: 538–548
Article
Google Scholar
Lepelley D, Louichi A and Smaoui H (2008). On Ehrhart polynomials and probability calculations in voting theory. Soc Choice Welf 30(3): 363–383
Article
Google Scholar
Muroga S (1971). Threshold logic and its applications, vol XIV. Wiley-Interscience, a Division of Wiley, Inc., New York
Google Scholar
Muroga S, Toda I and Kondo M (1962). Majority decision functions of up to six variables. Math Comput 16: 459–472
Article
Google Scholar
Muroga S, Tsuboi T and Baugh CR (1970). Enumeration of threshold functions of eight variables. IEEE Trans Comput 19: 818–825
Article
Google Scholar
Niskanen S, Östergård PRJ (2003) Cliquer user’s guide, version 1.0. Technical Report T48, Communications Laboratory, Helsinki University of Technology, Espoo
Östergård PRJ (2002). A fast algorithm for the maximum clique problem. Discret Appl Math 120(1–3): 197–207
Article
Google Scholar
Stanley RP (1999) Enumerative combinatorics. Vol. 1. Cambridge studies in advanced mathematics, p 49. Cambridge University Press, Cambridge
Taylor AD and Zwicker WS (1999). Simple games. Desirability relations, trading, pseudoweightings. Princeton University Press, Princeton
Google Scholar
Verdoolaege S (2008) Software package barvinok 2008. http://www.kotnet.org/~skimo/barvinok/. Accessed 02 Feb 2012.
Verdoolaege S, Woods KM, Bruynooghe M, Cools R (2005) Computation and manipulation of enumerators of integer projections of parametric polytopes. Technical Report CW 392. Department of Computer Science, Katholieke Universiteit Leuven
Wilson MC and Pritchard G (2007). Probability calculations under the IAC hypothesis. Math Soc Sci 54(3): 244–256
Article
Google Scholar
Winder RO (1962) Threshold logic. PhD Thesis, Princeton University
Winder RO (1965). Enumeration of seven-argument threshold functions. IEEE Trans Electron Comput 14: 315–325
Article
Google Scholar
Winder RO (1968). The fundamentals of threshold logic. In: Tou, J (ed) Applied automata theory, pp 236–318. Academic, New York
Google Scholar
Zuev YuA (1991). Methods of geometry and probabilistic combinatorics in threshold logic. Discret Math Appl 2(4): 427–438
Google Scholar