International Journal of Game Theory

, Volume 42, Issue 2, pp 411–437 | Cite as

On Dedekind’s problem for complete simple games

Article

Abstract

We state an integer linear programming formulation for the unique characterization of complete simple games, i.e. a special subclass of monotone Boolean functions. In order to apply the parametric Barvinok algorithm to obtain enumeration formulas for these discrete objects we provide a tailored decomposition of the integer programming formulation into a finite list of suitably chosen sub-cases. As for the original enumeration problem of Dedekind on Boolean functions we have to introduce some parameters to be able to derive exact formulas for small parameters. Recently, Freixas et al. have proven an enumeration formula for complete simple games with two types of voters. We will provide a shorter proof and a new enumeration formula for complete simple games with two minimal winning vectors.

Keywords

Boolean functions Dedekind’s problem Voting theory Complete simple games Application of the parametric Barvinok algorithm 

Mathematics Subject Classification

05A15* 91B12 94C10 52B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barvinok AI (1994). A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math Oper Res 19(4): 769–779CrossRefGoogle Scholar
  2. Barvinok A and Woods K (2003). Short rational generating functions for lattice point problems. J Am Math Soc 16(4): 957–979CrossRefGoogle Scholar
  3. Beck M, Robins S (2007) Computing the continuous discretely. Integer-point enumeration in polyhedra. Undergraduate texts in mathematics, vol xviii. Springer, New YorkGoogle Scholar
  4. Carreras F and Freixas J (1996). Complete simple games. Math Soc Sci 32: 139–155 CrossRefGoogle Scholar
  5. De Loera JA (2005). The many aspects of counting lattice points in polytopes. Math Semesterber 52(2): 175–195 CrossRefGoogle Scholar
  6. De Loera JA, Hemmecke R, Tauzer J and Yoshida R (2005). Effective lattice point counting in rational convex polytopes. J Symb Comput 38(4): 1273–1302 CrossRefGoogle Scholar
  7. Deĭneko VG and Woeginger GJ (2006). On the dimension of simple monotonic games. Eur J Oper Res 170(1): 315–318 CrossRefGoogle Scholar
  8. Ehrhart E (1977) Polynômes arithmétiques et méthode des polyedres en combinatoire. International series of numerical mathematics, vol 35. Birkhäuser Verlag, BaselGoogle Scholar
  9. Engel K (1997). Sperner theory. Encyclopedia of mathematics and its applications, vol 65. Cambridge University Press, Cambridge Google Scholar
  10. Fishburn PC and Brams SJ (1996). Minimal winning coalitions in weighted-majority voting games. Soc Choice Welf 13: 397–417 CrossRefGoogle Scholar
  11. Freixas J (1997). Different ways to represent weighted majority games. Top 5(2): 201–211 CrossRefGoogle Scholar
  12. Freixas J (2007). Bounds for Owen’s multilinear extension. J Appl Probab 44: 852–864 CrossRefGoogle Scholar
  13. Freixas J, Kurz S (submitted) On minimal integer representations of weighted voting gamesGoogle Scholar
  14. Freixas J and Molinero X (2009). On the existence of minimum integer representation for weighted voting systems. Ann Oper Res 166: 243–260 CrossRefGoogle Scholar
  15. Freixas J and Molinero X (2010). Weighted games without a unique minimal representation in integers. Optim Methods Softw 25: 203–215 CrossRefGoogle Scholar
  16. Freixas J, Molinero X (To appear) Complete voting systems with two classes of voters: weightedness and counting. Ann Oper Res 193(1): 273–289. doi:10.1007/s10479-011-0863-x
  17. Freixas J and Puente MA (2008). Dimension of complete simple games with minimum. Eur J Oper Res 188(2): 555–568 CrossRefGoogle Scholar
  18. Freixas J and Zwicker WS (2009). Anonymous yes–no voting with abstention and multiple levels of approval. Games Econ Behav 67(2): 428–444 CrossRefGoogle Scholar
  19. Freixas J, Molinero X, Olsen M and Serna M (2008). The complexity of testing properties of simple games. RAIRO-Oper Res 45(4): 295–314 doi:10.1051/ro/2011115 CrossRefGoogle Scholar
  20. Freixas J, Molinero X, Roura S (2009) A Fibonacci sequence for linear structures with two types of components. http://arxiv.org/abs/arxiv:0907.3853. Accessed 02 Feb 2012
  21. Gehrlein WV (2002). Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic. Soc Choice Welf 19(3): 503–512 CrossRefGoogle Scholar
  22. Gehrlein WV (2005). Probabilities of election outcomes with two parameters: the relative impact of unifying and polarizing candidates. Rev Econ Des 9(4): 317–336 Google Scholar
  23. Huang HC and Chua VCH (2000). Analytical representation of probabilities under the IAC condition. Soc Choice Welf 17(1): 143–155 CrossRefGoogle Scholar
  24. Isbell JR (1956). A class of majority games. Q J Math 7: 183–187 CrossRefGoogle Scholar
  25. Kilibarda G and Jovović V (2003). On the number of monotone Boolean functions with fixed number of lower units. Intellektualnye sistemy 7: 193–217 (in Russian)Google Scholar
  26. Kilibarda G, Jovović V (2007) Antichains of multisets. J Integer Seq 7:Article 04.1.5Google Scholar
  27. Kisielewicz A (1988). A solution of Dedekind’s problem on the number of isotone Boolean functions. J Reine Angew Math 386: 139–144 Google Scholar
  28. Koch T (2004) Rapid mathematical programming. PhD Thesis, Technische Universität BerlinGoogle Scholar
  29. Korshunov AD (2003). Monotone Boolean functions. Russ Math Surv 58(5): 929–1001 doi:10.1070/RM2003v058n05ABEH000667 CrossRefGoogle Scholar
  30. Krohn I and Sudhölter P (1995). Directed and weighted majority games. Math Methods Oper Res 42(2): 189–216 doi:10.1007/BF01415753 CrossRefGoogle Scholar
  31. Lenstra HW (1983). Integer programming with a fixed number of variables. Math Oper Res 8: 538–548 CrossRefGoogle Scholar
  32. Lepelley D, Louichi A and Smaoui H (2008). On Ehrhart polynomials and probability calculations in voting theory. Soc Choice Welf 30(3): 363–383 CrossRefGoogle Scholar
  33. Muroga S (1971). Threshold logic and its applications, vol XIV. Wiley-Interscience, a Division of Wiley, Inc., New York Google Scholar
  34. Muroga S, Toda I and Kondo M (1962). Majority decision functions of up to six variables. Math Comput 16: 459–472 CrossRefGoogle Scholar
  35. Muroga S, Tsuboi T and Baugh CR (1970). Enumeration of threshold functions of eight variables. IEEE Trans Comput 19: 818–825 CrossRefGoogle Scholar
  36. Niskanen S, Östergård PRJ (2003) Cliquer user’s guide, version 1.0. Technical Report T48, Communications Laboratory, Helsinki University of Technology, EspooGoogle Scholar
  37. Östergård PRJ (2002). A fast algorithm for the maximum clique problem. Discret Appl Math 120(1–3): 197–207 CrossRefGoogle Scholar
  38. Stanley RP (1999) Enumerative combinatorics. Vol. 1. Cambridge studies in advanced mathematics, p 49. Cambridge University Press, CambridgeGoogle Scholar
  39. Taylor AD and Zwicker WS (1999). Simple games. Desirability relations, trading, pseudoweightings. Princeton University Press, Princeton Google Scholar
  40. Verdoolaege S (2008) Software package barvinok 2008. http://www.kotnet.org/~skimo/barvinok/. Accessed 02 Feb 2012.
  41. Verdoolaege S, Woods KM, Bruynooghe M, Cools R (2005) Computation and manipulation of enumerators of integer projections of parametric polytopes. Technical Report CW 392. Department of Computer Science, Katholieke Universiteit LeuvenGoogle Scholar
  42. Wilson MC and Pritchard G (2007). Probability calculations under the IAC hypothesis. Math Soc Sci 54(3): 244–256CrossRefGoogle Scholar
  43. Winder RO (1962) Threshold logic. PhD Thesis, Princeton UniversityGoogle Scholar
  44. Winder RO (1965). Enumeration of seven-argument threshold functions. IEEE Trans Electron Comput 14: 315–325 CrossRefGoogle Scholar
  45. Winder RO (1968). The fundamentals of threshold logic. In: Tou, J (ed) Applied automata theory, pp 236–318. Academic, New YorkGoogle Scholar
  46. Zuev YuA (1991). Methods of geometry and probabilistic combinatorics in threshold logic. Discret Math Appl 2(4): 427–438Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Physics, and Computer ScienceUniversity of BayreuthBayreuthGermany

Personalised recommendations