Skip to main content
Log in

A review of Student’s t distribution and its generalizations

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

The Student’s t distribution is the most popular model for economic and financial data. In recent years, many generalizations of the Student’s t distribution have been proposed. This paper provides a review of generalizations, including software available for them. A real data application is presented to compare some of the reviewed distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aas K, Haff IH (2006) The generalized hyperbolic skew Student’s \(t\) distribution. J Financ Econom 4:275–309

    Article  Google Scholar 

  • Acitas S, Senoglu B, Arslan O (2015) Alpha-skew generalized \(t\) distribution. Rev Colomb Estad 38:353–370

    Article  Google Scholar 

  • Ahsanullah M, Kibria BMG, Shakil M (2014) Normal and Student’s \(t\) distributions and their applications. Atlantis Press, Paris

    Google Scholar 

  • Akahira M (1995) A higher order approximation to a percentage point of the non-central t-distribution. Commun Stat Simul Comput 24:595–605

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Arnold BC, Beaver RJ (2002) Skewed multivariate models related to hidden truncation and/or selective reporting. Test 11:7–54

    Article  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Statist 12:171–178

    Google Scholar 

  • Azzalini A, Capitanio A (2003) Statistical applications of the multivariate skew normal distribution. J R Stat Soc B 61:579–602

    Article  Google Scholar 

  • Baker RD (2016) A new asymmetric generalisation of the \(t\) distribution. arXiv:1606.05203 [stat.ME]

  • Bergmann DR, de Oliveira MA (2013) Modeling the distribution of Brazilian Stock Returns via scaled Student \(t\). Int Res J Finance Econ 108:27–38

    Google Scholar 

  • Brazauskas V, Kleefeld A (2011) Folded- and log-folded-\(t\) distributions as models for insurance loss data. Scand Actuar J 2011:59–74

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Cademartori D, Romo C, Campos R, Galea M (2003) Robust estimation of systematic risk using the \(t\) distribution in the Chilean Stock Markets. Appl Econ Lett 10:447–453

    Article  Google Scholar 

  • Cassidy DT, Hamp MJ, Ouyed R (2010) Pricing European options with a log Student’s \(t\) distribution: a Gosset formula. Phys A Stat Mech Appl 389:5736–5748

    Article  Google Scholar 

  • Fang Y (2011) Asymptotic equivalence between cross-validations and Akaike Information Criteria in mixed-effects models. J Data Sci 9:15–21

    Google Scholar 

  • Fernandez C, Steel MFJ (1998) On Bayesian modelling of fat tails and skewness. J Am Stat Assoc 93:359–371

    Google Scholar 

  • Gómez HW, Torres FJ, Bolfarine H (2007a) Large-sample inference for the epsilon-skew-\(t\) distribution. Commun Stat Theory Methods 36:73–81

    Article  Google Scholar 

  • Gómez HW, Varela H, Vidal L (2013) A new class of skew-symmetric distributions and related families. Statistics 47:411–421

    Article  Google Scholar 

  • Gómez HW, Venegas O, Bolfarine H (2007b) Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18:395–407

    Article  Google Scholar 

  • Gosset WS (1908) The probable error of a mean. Biometrika 6:1–25

    Article  Google Scholar 

  • Harvey A, Lange R (2015) Volatility modelling with a generalized \(t\) distribution. Cambridge Working Papers in Economics, Faculty of Economics, Cambridge University

  • Hasan AM (2013) A study of non-central skew \(t\) distributions and their applications in data analysis and change point detection. Ph.D. Thesis, Bowling Green State University, OH, USA

  • Ho HJ, Pyne S, Lin TI (2012) Maximum likelihood inference for mixtures of skew Student-\(t\)-normal distributions through practical EM-type algorithms. Stat Comput 22:287–299

    Article  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2, 2nd edn. Wiley, New York

    Google Scholar 

  • Jones MC, Faddy MJ (2003) A skew extension of the \(t\) distribution, with applications. J R Stat Soc B 65:159–174

    Article  Google Scholar 

  • Jones MC, Pewsey A (2009) Sinh-arcsinh distributions. Biometrika 96:761–780

    Article  Google Scholar 

  • Kim H (2008) Moments of truncated Student-\(t\) distribution. J Korean Stat Soc 37:81–87

    Article  Google Scholar 

  • Ku YHH (2008) Student-\(t\) distribution based VAR-MGARCH: an application of the DCC model on international portfolio risk management. Appl Econ 40:1685–1697

    Article  Google Scholar 

  • Levy KJ, Narula SC (1974) Probability density plots of the non-central t-distribution. Int Stat Rev 42:305–306

    Article  Google Scholar 

  • Li R, Nadarajah S (2016) The Kumaraswamy skew \(G\) distributions. Bull Braz Math Soc (submitted)

  • McDonald JB, Newey WK (1988) Partially adaptive estimation of regression models via the generalized \(t\) distribution. Econ Theory 4:428–457

    Article  Google Scholar 

  • Mittnik S, Paolella MS (2000) Conditional density and Value-at-Risk prediction of Asian currency exchange rates. J Forecast 19:313–333

    Article  Google Scholar 

  • Nadarajah S (2008) On the generalized \(t\) (GT) distribution. Statistics 42:467–473

    Article  Google Scholar 

  • Ord JK (1968) The discrete Student’s \(t\) distribution. Ann Math Stat 39:1513–1516

    Article  Google Scholar 

  • Paolella M (1997) Tail estimation and conditional modeling of heteroscedastic time series. Ph.D. thesis, Institute of Statistics and Econometrics, Christian Albrechts University at Kiel

  • Papastathopoulos I, Tawn JA (2013) A generalised Student’s \(t\)-distribution. Stat Probab Lett 83:70–77

    Article  Google Scholar 

  • Psarakis S, Panaretos J (2007) The folded \(t\) distribution. Commun Stat Theory Methods 19:2717–2734

    Article  Google Scholar 

  • R Development Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Roozegar R, Nematollahi A, Jamalizadeh A (2016) Properties and inference for a new class of skew-\(t\) distributions. Commun Stat Simul Comput 45:3217–3237

    Article  Google Scholar 

  • Rosco JF, Jones MC, Pewsey A (2011) Skew \(t\) distributions via the sinh-arcsinh transformation. Test 20:630–652

    Article  Google Scholar 

  • Schlüter S, Fischer M (2012) A tail quantile approximation for the Student t distribution. Commun Stat Theory Methods 41:2617–2625

    Article  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Sepanski JH, Kong L (2007) A family of generalized beta distributions for income. arXiv:0710.4614v1

  • Shafiei S, Doostparast M (2014) Balakrishnan skew-\(t\) distribution and associated statistical characteristics. Commun Stat Theory Methods 43:4109–4122

    Article  Google Scholar 

  • Shittu OI, Adepoju KA, Adeniji OE (2014) On beta skew-\(t\) distribution in modelling stock returns in Nigeria. Int J Mod Math Sci 11:94–102

    Google Scholar 

  • Theodossiou P (1998) Financial data and the skewed generalized \(t\) distribution. Manag Sci 44:1650–1661

    Article  Google Scholar 

  • Zhu D, Galbraith JW (2010) A generalized asymmetric Student-\(t\) distribution with application to financial econometrics. J Econ 157:297–305

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and the referee for careful reading and comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Nadarajah, S. A review of Student’s t distribution and its generalizations. Empir Econ 58, 1461–1490 (2020). https://doi.org/10.1007/s00181-018-1570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-018-1570-0

Keywords

Navigation