Empirical Economics

, Volume 53, Issue 2, pp 525–567 | Cite as

Sudden stops and output: an empirical Markov switching analysis

  • Andreas BachmannEmail author
  • Stefan Leist


Sudden stops and their negative effects on GDP have recently received increased attention because quantitative easing has led to substantial capital inflows into emerging economies. We extend the empirical literature on the impact of sudden stops on GDP by proposing an alternative econometric approach which is multivariate, nonlinear and uses a novel way to identify sudden stops. We estimate a Markov switching vector autoregression with a latent variable indicating whether the economy is in a sudden stop regime. We use the maximum fraction of forecast error variance approach for partial structural identification of the vector autoregression model. Beyond confirming findings from the existing empirical literature on sudden stops, our results additionally show that (i) sudden stops are associated with regime switches (i.e., breaks in the behavior of economic variables), which have significantly negative and permanent effects on GDP; (ii) impulse responses to net capital inflow shocks are regime dependent with economies being more vulnerable to shocks during the sudden stop regime; and (iii) there were different main drivers of the output decline in historical sudden stop episodes.


Sudden stops Capital flows Economic growth Markov switching Forecast error variance 

JEL Classification

F32 F41 



We thank Dario Caldara, Eduardo Cavallo, Fabrice Collard, Sylvia Kaufmann, Klaus Neusser, Morten Ravn, anonymous referees, and participants at the Royal Economic Society Annual Conference, the INFINITI Conference on International Finance, the Swiss Society of Economics and Statistics Annual Congress, and the PhD Workshop of the University of Bern for much appreciated comments.


  1. Bordo MD, Cavallo AF, Meissner CM (2010) Sudden stops: determinants and output effects in the first era of globalization, 1880–1913. J Dev Econ 91(2):227–241. doi: 10.1016/j.jdeveco.2009.09.005 CrossRefGoogle Scholar
  2. Braggion F, Christiano LJ, Roldos J (2009) Optimal monetary policy in a ‘sudden stop’. J Monet Econ 56(4):582–595. doi: 10.1016/j.jmoneco.2009.03.010 CrossRefGoogle Scholar
  3. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455Google Scholar
  4. Calvo GA (1998) Capital flows and capital-market crises: the simple economics of sudden stops. J Appl Econ I:35–54Google Scholar
  5. Calvo GA, Izquierdo A, Mejia LF (2004) On the empirics of sudden stops: the relevance of balance-sheet effects. NBER working papers 10520. National Bureau of Economic Research, Inc., Cambridge. doi: 10.3386/w10520
  6. Calvo GA, Izquierdo A, Loo-Kung R (2006a) Relative price volatility under sudden stops: the relevance of balance sheet effects. J Int Econ 69(1):231–254CrossRefGoogle Scholar
  7. Calvo GA, Izquierdo A, Talvi E (2006b) Phoenix miracles in emerging markets: recovering without credit from systemic financial crises. BIS working papers 221. Bank for International Settlements, Basel. doi: 10.2139/ssrn.1012286
  8. Calvo GA, Izquierdo A, Talvi E (2006c) Sudden stops and phoenix miracles in emerging markets. Am Econ Rev 96(2):405–410. doi: 10.1257/000282806777211856 CrossRefGoogle Scholar
  9. Canova F (2007) Methods for applied macroeconomic research. Princeton University Press, PrincetonGoogle Scholar
  10. Chari VV, Kehoe PJ, McGrattan ER (2005) Sudden stops and output drops. Am Econ Rev 95(2):381–387. doi: 10.1257/000282805774670013 CrossRefGoogle Scholar
  11. Chib S (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J Econom 75(1):79–97. doi: 10.1016/0304-4076(95)01770-4 CrossRefGoogle Scholar
  12. Ciccarelli M, Rebucci A (2003) Bayesian VARs; a survey of the recent literature with an application to the European monetary system. IMF working papers 03/102. International Monetary Fund, Washington. doi: 10.5089/9781451852639.001
  13. Cook D, Devereux MB (2006) Accounting for the East Asian crisis: a quantitative model of capital outflows in small open economies. J Money Credit Bank 38(3):721–749. doi: 10.1353/mcb.2006.0040 CrossRefGoogle Scholar
  14. Edwards S (2004) Financial openness, sudden stops, and current-account reversals. Am Econ Rev 94(2):59–64. doi: 10.1257/0002828041302217 CrossRefGoogle Scholar
  15. Ehrmann M, Ellison M, Valla N (2003) Regime-dependent impulse response functions in a Markov-switching vector autoregression model. Econ Lett 78(3):295–299. doi: 10.1016/s0165-1765(02)00256-2 CrossRefGoogle Scholar
  16. Frühwirth-Schnatter S (2001) Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J Am Stat Assoc 96(453):194–209CrossRefGoogle Scholar
  17. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472CrossRefGoogle Scholar
  18. Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bayesian statistics, vol 4. Oxford University Press, Oxford, pp 169–193Google Scholar
  19. Gilchrist S, Zakrajsek E, Albero CF, Caldara D (2013) On the identification of financial and uncertainty shocks. 2013 meeting papers 965. Society for Economic DynamicsGoogle Scholar
  20. Gopinath G (2004) Lending booms, sharp reversals and real exchange rate dynamics. J Int Econ 62(1):1–23. doi: 10.1016/j.jinteco.2003.08.002 CrossRefGoogle Scholar
  21. Hamilton J (1994) Time series analysis. Princeton University Press, PrincetonGoogle Scholar
  22. Heidelberger P, Welch PD (1981) A spectral method for confidence interval generation and run length control in simulations. Commun ACM 24(4):233–245. doi: 10.1145/358598.358630 CrossRefGoogle Scholar
  23. Hutchison MM, Noy I (2006) Sudden stops and the Mexican wave: currency crises, capital flow reversals and output loss in emerging markets. J Dev Econ 79(1):225–248. doi: 10.1016/j.jdeveco.2004.12.002 CrossRefGoogle Scholar
  24. IMF (2011) Global financial stability report: grappling with crisis legacies. International Monetary Fund, Washington. doi: 10.5089/9781616351243.082
  25. IMF (2013) Global financial stability report: transition challenges to stability. International Monetary Fund, Washington. doi: 10.5089/9781475524970.082
  26. Jaimovich N, Rebelo S (2008) News and business cycles in open economies. J Money Credit Bank 40(8):1699–1711. doi: 10.1111/j.1538-4616.2008.00179.x CrossRefGoogle Scholar
  27. Jasra A, Holmes CC, Stephens DA (2005) Markov chain Monte Carlo methods and the label switching problem in bayesian mixture modeling. Stat Sci 20(1):50–67. doi: 10.1214/088342305000000016 CrossRefGoogle Scholar
  28. Kehoe TJ, Ruhl KJ (2009) Sudden stops, sectoral reallocations, and the real exchange rate. J Dev Econ 89(2):235–249. doi: 10.1016/j.jdeveco.2009.01.003 CrossRefGoogle Scholar
  29. Kim C, Nelson C (1999) State-space models with regime switching: classical and Gibbs-sampling approaches with applications. MIT Press, CambridgeGoogle Scholar
  30. Koop G, Pesaran MH, Potter SM (1996) Impulse response analysis in nonlinear multivariate models. J Econom 74(1):119–147. doi: 10.1016/0304-4076(95)01753-4 CrossRefGoogle Scholar
  31. Krolzig HM (2006) Impulse response analysis in Markov switching vector autoregressive models. Economics Department, University of Kent, Keynes College, CanterburyGoogle Scholar
  32. Litterman RB (1979) Techniques of forecasting using vector autoregressions. Working papers 115. Federal Reserve Bank of Minneapolis, MinneapolisGoogle Scholar
  33. Litterman RB (1986) Forecasting with bayesian vector autoregressions—five years of experience. J Bus Econ Stat 4(1):25–38. doi: 10.2307/1391384 Google Scholar
  34. Mendoza EG (2010) Sudden stops, financial crises, and leverage. Am Econ Rev 100(5):1941–1966. doi: 10.1257/aer.100.5.1941
  35. Mendoza EG, Smith KA (2002) Margin calls, trading costs, and asset prices in emerging markets: the financial mechanics of the ’sudden stop’ phenomenon. NBER working papers 9286. National Bureau of Economic Research, Inc., Cambridge. doi: 10.3386/w9286
  36. Neumeyer PA, Perri F (2005) Business cycles in emerging economies: the role of interest rates. J Monetary Econ 52(2):345–380. doi: 10.1016/j.jmoneco.2004.04.011 CrossRefGoogle Scholar
  37. Uhlig H (2004a) Do technology shocks lead to a fall in total hours worked? J Eur Econ Assoc 2(2–3):361–371. doi: 10.1162/154247604323068050
  38. Uhlig H (2004b) What moves GNP? Econometric Society 2004 North American Winter Meetings 636. Econometric SocietyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of BernBernSwitzerland
  2. 2.State Secretariat for Economic Affairs SECOBernSwitzerland

Personalised recommendations