On the distributional properties of household consumption expenditures: the case of Italy

Abstract

In this paper we explore the statistical properties of the distributions of consumption expenditures for a large sample of Italian households in the period 1989–2004. Goodness-of-fit tests show that household aggregate (and age-conditioned) consumption distributions are not log-normal. Rather, their logs can be invariably characterized by asymmetric exponential-power densities. Departures from log-normality are mainly due to the presence of thick lower tails coexisting with upper tails thinner than Gaussian ones. The emergence of this irreducible heterogeneity in statistical patterns casts some doubts on the attempts to explain log-normality of household consumption patterns by means of simple models based on Gibrat’s Law applied to permanent income and marginal utility.

This is a preview of subscription content, log in to check access.

References

  1. Adler R, Feldman R, Taqqu M (1998) A practical guide to heavy tailed data. Birkhäuser, Boston

    Google Scholar 

  2. Agrò G (1995) Maximum likelihood estimation for the exponential power function parameters. Commun Stat 24: 523–536

    Article  Google Scholar 

  3. Anderson T, Darling D (1954) A test for goodness-of-fit. J Am Stat Assoc 49: 765–769

    Article  Google Scholar 

  4. Attanasio O (1999) Consumption demand. In: Taylor J, Woodford M (eds) Handbook of macroeconomics. Elsevier Science, Amsterdam

    Google Scholar 

  5. Aversi R, Dosi G, Fagiolo G, Meacci M, Olivetti C (1999) Demand dynamics with socially evolving preferences. J Evol Econ 8: 353–408

    Google Scholar 

  6. Axtell R (2001) Zipf distributions of U.S. firm sizes. Science 293: 1818–1820

    Article  Google Scholar 

  7. Barndorff-Nielsen O (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc Roy Soc A 353: 401–419

    Article  Google Scholar 

  8. Battistin E, Blundell R, Lewbel A (2007) Why is consumption more log normal than income? Gibrat’s law revisited. IFS Working Papers WP08/07, The Institute for Fiscal Studies, London, UK

  9. Bera A, Jarque C (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6: 255–259

    Article  Google Scholar 

  10. Bera A, Jarque C (1981) Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Econ Lett 7: 313–318

    Article  Google Scholar 

  11. Bottazzi G, Secchi A (2006a) Explaining the distribution of firm growth rates. Rand J Econ 37: 235–256

    Article  Google Scholar 

  12. Bottazzi G, Secchi A (2006b) Maximum likelihood estimation of the symmetric and asymmetric exponential power distribution. Working Paper 2006/19 Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy

  13. Brandolini A (1999) The distribution of personal income in post-war Italy: source description, data quality, and the time pattern of income inequality. Temi di Discussione (Economics Working Papers), No. 350, Bank of Italy, Rome

  14. Brock WA (1999) Scaling in economics: a reader’s guide. Ind Corp Change 8(3): 409–446

    Article  Google Scholar 

  15. Capasso M, Alessi L, Barigozzi M, Fagiolo G (2009) On approximating the distributions of goodness-of-fit test statistics based on the empirical distribution function: the case of unknown parameters. Adv Complex Syst (forthcoming)

  16. Champernowne D (1953) A model of income distribution. Econ J 63: 318–351

    Article  Google Scholar 

  17. Chatterjee A, Yarlagadda S, Chakrabarti B (eds) (2005) Econophysics of wealth distributions. Springer-Verlag Italia, Milan

    Google Scholar 

  18. Chernobay A, Rachev S, Fabozzi F (2005) Composites goodness-of-fit tests for left-truncated loss samples. Tech. Rep., University of California at Santa Barbara

  19. Clementi F, Gallegati M (2005a) Pareto’s law of income distribution: evidence for Germany, the United Kingdom, and the United States. In: Chatterjee A, Yarlagadda S, Chakrabarti B (eds) Econophysics of wealth distributions. Springer-Verlag Italia, Milan

    Google Scholar 

  20. Clementi F, Gallegati M (2005b) Power law tails in the Italian personal income distribution. Physica A 350: 427–438

    Article  Google Scholar 

  21. D’Agostino R, Stephens M (1986) Goodness of fit techniques. Marcel Dekker, New York

    Google Scholar 

  22. Drees H, Kaufmann E (1998) Selecting the optimal sample fraction in univariate extreme value estimation. Stoch Proc Appl 75: 149–172

    Article  Google Scholar 

  23. Embrechts P, Kluppelberg CP, Mikosh T (1997) Modelling extremal events. Springer, Berlin

    Google Scholar 

  24. Fagiolo G, Napoletano M, Roventini A (2008) Are output growth-rate distributions fat-tailed? Some evidence from OECD countries. J Appl Econ 23: 639–669

    Article  Google Scholar 

  25. Forni M, Lippi M (1997) Aggregation and the microfoundations of dynamic macroeconomics. Clarendon Press, Oxford

    Google Scholar 

  26. Friedman M (1957) A theory of the consumption function. Princeton University Press, Princeton

    Google Scholar 

  27. Fu D, Pammolli F, Buldyrev S, Riccaboni M, Matia K, Yamasaki K, Stanley H (2005) The growth of business firms: theoretical framework and empirical evidence. Proc Natl Acad Sci USA 102: 18801–18806

    Article  Google Scholar 

  28. Gibrat R (1931) Les Inégalités Economiques. Librairie du Recueil Sirey, Paris

    Google Scholar 

  29. Groeneveld R, Meeden G (1984) Measuring skewness and kurtosis. Statistician 33: 391–399

    Article  Google Scholar 

  30. Hall P (1982) On some simple estimates of an exponent of regular variation. J Roy Stat Soc B 44: 37–42

    Google Scholar 

  31. Hall R (1978) Stochastic implications of the life cycle-permamnent income hypothesis: theory and evidence. J Polit Econ 86: 971–987

    Article  Google Scholar 

  32. Hill B (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3: 1163–1173

    Article  Google Scholar 

  33. Hohnisch M, Pittnauer S, Chakrabarty M (2002) Empirical regularities in distributions of individual consumption expenditure. Int J Mod Phys C 13: 541–549

    Article  Google Scholar 

  34. Huber P (1981) Robust statistics. Wiley, New York

    Google Scholar 

  35. Ijiri Y, Simon H (1977) Skew distributions and the sizes of business firms. North-Holland, New York

    Google Scholar 

  36. Kalecki M (1945) On the Gibrat distribution. Econometrica 13: 161–170

    Article  Google Scholar 

  37. Lee Y, Amaral LAN, Canning D, Meyer M, Stanley HE (1998) Universal features in the growth dynamics of complex organizations. Phys Rev Lett 81: 3275–3278

    Article  Google Scholar 

  38. Lilliefors H (1967) On the Kolmogorov-Smirnov tests for normality with mean and variance unknown. J Am Stat Assoc 62: 399–402

    Article  Google Scholar 

  39. Loretan M, Phillips P (1994) Testing the covariance stationarity of heavy-tailed time series. J Emp Fin 1: 211–248

    Article  Google Scholar 

  40. Lux T (1996) The stable Paretian hypothesis and the frequency of large returns: an examination of major german stocks. Appl Fin Econ 6: 463–475

    Article  Google Scholar 

  41. Lux T (2000) On moment condition failure in German stock returns: an application of recent advances in extreme value statistics. Emp Econ 25: 641–652

    Article  Google Scholar 

  42. Lux T (2001) The limiting extremal behaviour of speculative returns: an analysis of intra-daily data from the Frankfurt Stock Exchange. Appl Fin Econ 11: 299–315

    Article  Google Scholar 

  43. Moors J (1988) A quantile alternative to kurtosis. Statistician 37: 25–32

    Article  Google Scholar 

  44. Nolan J (2006) Stable distributions. In: Models for heavy tailed data. Birkhäuser, Boston

  45. Pictet O, Dacorogna M, Müller U (1998) Hill, bootstrap and jacknife estimators for heavy tails. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tailed data. Birkhäuser, Boston

    Google Scholar 

  46. Reiss R.-D, Thomas M (2001) Statistical analysis of extreme values. Birkhäuser Verlag, Basel

    Google Scholar 

  47. Souma W (2001) Universal structure of the personal income distribution. Fractals 9: 463–470

    Article  Google Scholar 

  48. Subbotin M (1923) On the law of frequency of errors. Matematicheskii Sbornik 31: 296–301

    Google Scholar 

  49. Sutton J (1997) Gibrat’s legacy. J Econ Lit 35: 40–59

    Google Scholar 

  50. Thode HCJ (2002) Testing for normality. Marcel Dekker, New York

    Google Scholar 

  51. Witt U (2001) Special issue: learning to consume—a theory of wants and the growth of demand. J Evol Econ 11: 23–36

    Article  Google Scholar 

  52. Witt U (2007) Evolutionary economics and psychology. Papers on Econonics and evolution 2006–13, Max Planck Institute of Economics, Evolutionary Economics Group, Jena, Germany

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giorgio Fagiolo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fagiolo, G., Alessi, L., Barigozzi, M. et al. On the distributional properties of household consumption expenditures: the case of Italy. Empir Econ 38, 717–741 (2010). https://doi.org/10.1007/s00181-009-0287-5

Download citation

Keywords

  • Consumption
  • Asymmetric exponential-power distribution
  • Income distribution
  • Log-normal distribution
  • Gibrat’s law

JEL Classification

  • D3
  • D12
  • C12