Advertisement

Empirical Economics

, Volume 38, Issue 3, pp 717–741 | Cite as

On the distributional properties of household consumption expenditures: the case of Italy

  • Giorgio Fagiolo
  • Lucia Alessi
  • Matteo Barigozzi
  • Marco Capasso
Original Paper

Abstract

In this paper we explore the statistical properties of the distributions of consumption expenditures for a large sample of Italian households in the period 1989–2004. Goodness-of-fit tests show that household aggregate (and age-conditioned) consumption distributions are not log-normal. Rather, their logs can be invariably characterized by asymmetric exponential-power densities. Departures from log-normality are mainly due to the presence of thick lower tails coexisting with upper tails thinner than Gaussian ones. The emergence of this irreducible heterogeneity in statistical patterns casts some doubts on the attempts to explain log-normality of household consumption patterns by means of simple models based on Gibrat’s Law applied to permanent income and marginal utility.

Keywords

Consumption Asymmetric exponential-power distribution Income distribution Log-normal distribution Gibrat’s law 

JEL Classification

D3 D12 C12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler R, Feldman R, Taqqu M (1998) A practical guide to heavy tailed data. Birkhäuser, BostonGoogle Scholar
  2. Agrò G (1995) Maximum likelihood estimation for the exponential power function parameters. Commun Stat 24: 523–536CrossRefGoogle Scholar
  3. Anderson T, Darling D (1954) A test for goodness-of-fit. J Am Stat Assoc 49: 765–769CrossRefGoogle Scholar
  4. Attanasio O (1999) Consumption demand. In: Taylor J, Woodford M (eds) Handbook of macroeconomics. Elsevier Science, AmsterdamGoogle Scholar
  5. Aversi R, Dosi G, Fagiolo G, Meacci M, Olivetti C (1999) Demand dynamics with socially evolving preferences. J Evol Econ 8: 353–408Google Scholar
  6. Axtell R (2001) Zipf distributions of U.S. firm sizes. Science 293: 1818–1820CrossRefGoogle Scholar
  7. Barndorff-Nielsen O (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc Roy Soc A 353: 401–419CrossRefGoogle Scholar
  8. Battistin E, Blundell R, Lewbel A (2007) Why is consumption more log normal than income? Gibrat’s law revisited. IFS Working Papers WP08/07, The Institute for Fiscal Studies, London, UKGoogle Scholar
  9. Bera A, Jarque C (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6: 255–259CrossRefGoogle Scholar
  10. Bera A, Jarque C (1981) Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. Econ Lett 7: 313–318CrossRefGoogle Scholar
  11. Bottazzi G, Secchi A (2006a) Explaining the distribution of firm growth rates. Rand J Econ 37: 235–256CrossRefGoogle Scholar
  12. Bottazzi G, Secchi A (2006b) Maximum likelihood estimation of the symmetric and asymmetric exponential power distribution. Working Paper 2006/19 Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, ItalyGoogle Scholar
  13. Brandolini A (1999) The distribution of personal income in post-war Italy: source description, data quality, and the time pattern of income inequality. Temi di Discussione (Economics Working Papers), No. 350, Bank of Italy, RomeGoogle Scholar
  14. Brock WA (1999) Scaling in economics: a reader’s guide. Ind Corp Change 8(3): 409–446CrossRefGoogle Scholar
  15. Capasso M, Alessi L, Barigozzi M, Fagiolo G (2009) On approximating the distributions of goodness-of-fit test statistics based on the empirical distribution function: the case of unknown parameters. Adv Complex Syst (forthcoming)Google Scholar
  16. Champernowne D (1953) A model of income distribution. Econ J 63: 318–351CrossRefGoogle Scholar
  17. Chatterjee A, Yarlagadda S, Chakrabarti B (eds) (2005) Econophysics of wealth distributions. Springer-Verlag Italia, MilanGoogle Scholar
  18. Chernobay A, Rachev S, Fabozzi F (2005) Composites goodness-of-fit tests for left-truncated loss samples. Tech. Rep., University of California at Santa BarbaraGoogle Scholar
  19. Clementi F, Gallegati M (2005a) Pareto’s law of income distribution: evidence for Germany, the United Kingdom, and the United States. In: Chatterjee A, Yarlagadda S, Chakrabarti B (eds) Econophysics of wealth distributions. Springer-Verlag Italia, MilanGoogle Scholar
  20. Clementi F, Gallegati M (2005b) Power law tails in the Italian personal income distribution. Physica A 350: 427–438CrossRefGoogle Scholar
  21. D’Agostino R, Stephens M (1986) Goodness of fit techniques. Marcel Dekker, New YorkGoogle Scholar
  22. Drees H, Kaufmann E (1998) Selecting the optimal sample fraction in univariate extreme value estimation. Stoch Proc Appl 75: 149–172CrossRefGoogle Scholar
  23. Embrechts P, Kluppelberg CP, Mikosh T (1997) Modelling extremal events. Springer, BerlinGoogle Scholar
  24. Fagiolo G, Napoletano M, Roventini A (2008) Are output growth-rate distributions fat-tailed? Some evidence from OECD countries. J Appl Econ 23: 639–669CrossRefGoogle Scholar
  25. Forni M, Lippi M (1997) Aggregation and the microfoundations of dynamic macroeconomics. Clarendon Press, OxfordGoogle Scholar
  26. Friedman M (1957) A theory of the consumption function. Princeton University Press, PrincetonGoogle Scholar
  27. Fu D, Pammolli F, Buldyrev S, Riccaboni M, Matia K, Yamasaki K, Stanley H (2005) The growth of business firms: theoretical framework and empirical evidence. Proc Natl Acad Sci USA 102: 18801–18806CrossRefGoogle Scholar
  28. Gibrat R (1931) Les Inégalités Economiques. Librairie du Recueil Sirey, ParisGoogle Scholar
  29. Groeneveld R, Meeden G (1984) Measuring skewness and kurtosis. Statistician 33: 391–399CrossRefGoogle Scholar
  30. Hall P (1982) On some simple estimates of an exponent of regular variation. J Roy Stat Soc B 44: 37–42Google Scholar
  31. Hall R (1978) Stochastic implications of the life cycle-permamnent income hypothesis: theory and evidence. J Polit Econ 86: 971–987CrossRefGoogle Scholar
  32. Hill B (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3: 1163–1173CrossRefGoogle Scholar
  33. Hohnisch M, Pittnauer S, Chakrabarty M (2002) Empirical regularities in distributions of individual consumption expenditure. Int J Mod Phys C 13: 541–549CrossRefGoogle Scholar
  34. Huber P (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  35. Ijiri Y, Simon H (1977) Skew distributions and the sizes of business firms. North-Holland, New YorkGoogle Scholar
  36. Kalecki M (1945) On the Gibrat distribution. Econometrica 13: 161–170CrossRefGoogle Scholar
  37. Lee Y, Amaral LAN, Canning D, Meyer M, Stanley HE (1998) Universal features in the growth dynamics of complex organizations. Phys Rev Lett 81: 3275–3278CrossRefGoogle Scholar
  38. Lilliefors H (1967) On the Kolmogorov-Smirnov tests for normality with mean and variance unknown. J Am Stat Assoc 62: 399–402CrossRefGoogle Scholar
  39. Loretan M, Phillips P (1994) Testing the covariance stationarity of heavy-tailed time series. J Emp Fin 1: 211–248CrossRefGoogle Scholar
  40. Lux T (1996) The stable Paretian hypothesis and the frequency of large returns: an examination of major german stocks. Appl Fin Econ 6: 463–475CrossRefGoogle Scholar
  41. Lux T (2000) On moment condition failure in German stock returns: an application of recent advances in extreme value statistics. Emp Econ 25: 641–652CrossRefGoogle Scholar
  42. Lux T (2001) The limiting extremal behaviour of speculative returns: an analysis of intra-daily data from the Frankfurt Stock Exchange. Appl Fin Econ 11: 299–315CrossRefGoogle Scholar
  43. Moors J (1988) A quantile alternative to kurtosis. Statistician 37: 25–32CrossRefGoogle Scholar
  44. Nolan J (2006) Stable distributions. In: Models for heavy tailed data. Birkhäuser, BostonGoogle Scholar
  45. Pictet O, Dacorogna M, Müller U (1998) Hill, bootstrap and jacknife estimators for heavy tails. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tailed data. Birkhäuser, BostonGoogle Scholar
  46. Reiss R.-D, Thomas M (2001) Statistical analysis of extreme values. Birkhäuser Verlag, BaselGoogle Scholar
  47. Souma W (2001) Universal structure of the personal income distribution. Fractals 9: 463–470CrossRefGoogle Scholar
  48. Subbotin M (1923) On the law of frequency of errors. Matematicheskii Sbornik 31: 296–301Google Scholar
  49. Sutton J (1997) Gibrat’s legacy. J Econ Lit 35: 40–59Google Scholar
  50. Thode HCJ (2002) Testing for normality. Marcel Dekker, New YorkCrossRefGoogle Scholar
  51. Witt U (2001) Special issue: learning to consume—a theory of wants and the growth of demand. J Evol Econ 11: 23–36CrossRefGoogle Scholar
  52. Witt U (2007) Evolutionary economics and psychology. Papers on Econonics and evolution 2006–13, Max Planck Institute of Economics, Evolutionary Economics Group, Jena, GermanyGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Giorgio Fagiolo
    • 1
  • Lucia Alessi
    • 2
  • Matteo Barigozzi
    • 1
    • 3
  • Marco Capasso
    • 4
    • 5
  1. 1.Laboratory of Economics and ManagementSant’Anna School of Advanced StudiesPisaItaly
  2. 2.European Central BankFrankfurt am MainGermany
  3. 3.European Center for Advanced Research in Economics and Statistics (ECARES)Université Libre de BruxellesBruxellesBelgium
  4. 4.Faculty of Geosciences, Urban and Regional Research Centre Utrecht (URC)Utrecht UniversityUtrechtThe Netherlands
  5. 5.Utrecht School of Economics, Tjalling Co Koopmans Research Institute (TKI)Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations