Skip to main content

Advertisement

Log in

A spatially filtered mixture of β-convergence regressions for EU regions, 1980–2002

  • Original Paper
  • Published:
Empirical Economics Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2007

Abstract

Assessing regional growth and convergence across Europe is a matter of primary relevance. Empirical models that do not account for structural heterogeneities and spatial effects may face serious misspecification problems. In this work, a mixture regression approach is applied to the β-convergence model, in order to produce an endogenous selection of regional growth patterns. A priori choices, such as North–South or centre-periphery divisions, are avoided. In addition to this, we deal with the spatial dependence existing in the data, applying a local filter to the data. The results indicate that spatial effects matter, and either absolute, conditional, or club convergence, if extended to the whole sample, might be restrictive assumptions. Excluding a small number of regions that behave as outliers, only a few regions show an appreciable rate of convergence. The majority of data show slow convergence, or no convergence at all. Furthermore, a dualistic phenomenon seems to be present inside some States, reinforcing the “diverging-convergence” paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu M, De Groot HLF and Florax RJGM (2005a). A meta-analysis of β-convergence: the legendary 2%. J Econ Surv 19: 389–420

    Article  Google Scholar 

  • Abreu M, De Groot HLF and Florax RJGM (2005b). Space and growth: a survey of empirical evidence and methods. Région et Développement 21: 13–44

    Google Scholar 

  • Anselin L (1988). Spatial econometrics: methods and models. Kluwer, Dordrecht

    Google Scholar 

  • Anselin L (2001). Spatial econometrics. In: Baltagi, BH (eds) A companion to Theoretical econometrics, pp 310–330. Blackwell, Oxford

    Google Scholar 

  • Anselin L (2005) Exploring spatial data with GeoDa: a workbook. Center for spatial integrated social science, Santa Barbara

  • Anselin L and Bera AK (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah, A and Giles, DEA (eds) Handbook of applied economic statistics, pp 237–289. Marcel Dekker, New York

    Google Scholar 

  • Arbia G (2006). Spatial econometrics: statistical foundations and applications to regional convergence. Springer, Berlin

    Google Scholar 

  • Armstrong HW (1995). Convergence among regions of the European Union, 1950–1990. Pap Reg Sci 74: 143–152

    Article  Google Scholar 

  • Azariadis C and Drazen A (1990). Threshold externalities in economic development. Q J Econ 105: 501–526

    Article  Google Scholar 

  • Badinger H, Müller WG and Tondl G (2004). Regional convergence in the European Union, 1985–1999: a spatial dynamic panel analysis. Reg Stud 38: 241–253

    Article  Google Scholar 

  • Barro RJ and Sala-i-Martin X (1991). Convergence across states and regions. Brookings Pap Econ Act 1: 107–182

    Article  Google Scholar 

  • Barro RJ and Sala-i-Martin X (1992). Convergence. J Polit Econ 100: 223–251

    Article  Google Scholar 

  • Barro RJ and Sala-i-Martin X (2004). Economic growth, 2nd edn. MIT, Cambridge

    Google Scholar 

  • Bernard AB and Durlauf SN (1996). Interpreting tests of the convergence hypothesis. J Econom 71: 161–173

    Article  Google Scholar 

  • Bloom DE, Canning D and Sevilla J (2003). Geography and poverty traps. J Econ Growth 8: 355–378

    Article  Google Scholar 

  • Boldrin M and Canova F (2001). Inequality and convergence in Europe’s regions: reconsidering European regional policies. Econ policy 16: 207–253

    Article  Google Scholar 

  • Canova F (2004). Testing for convergence clubs in income per capita: a predictive density approach. Int Econ Rev 45: 49–77

    Article  Google Scholar 

  • Commission of the European Communities (2005) Communication from the Commission. Third progress report on cohesion: towards a new partnership for growth, jobs and cohesion. 17.5.2005 COM(2005) 192 final. Brussels

  • De Sarbo WS and Cron WL (1988). A maximum likelihood methodology for clusterwise linear regression. J Classif 5: 249–282

    Article  Google Scholar 

  • Durlauf SN and Johnson PA (1995). Multiple regimes and cross-country growth behaviour. J Appl Econom 10: 365–384

    Article  Google Scholar 

  • Durlauf SN, Quah DT (1999) The new empirics of economic growth. In: Taylor JB, Woodford M (eds) Handbook of macroeconomics, vol 1. North Holland, Amsterdam, pp 235–308

  • Durlauf SN, Kourtellos A and Minkin A (2001). The local Solow growth model. Eur Econ Rev 45: 928–940

    Article  Google Scholar 

  • Durlauf SN, Johnson PA, Temple JRW (2005) Growth econometrics. In: Durlauf SN, Aghion P (eds) Handbook of economic growth. North Holland, Amsterdam, pp 555–677

  • Ertur C, Le Gallo J and Baumont C (2006). The European regional convergence process, 1980–1995: do spatial regimes and spatial dependence matter?. Int Reg Sci Rev 29: 3–24

    Article  Google Scholar 

  • European Commission (2001) Unity, solidarity, diversity for Europe, its people and its territory. Second report on economic and social cohesion. Office for Official Publications of the European Communities, Luxembourg

  • European Commission (2004) A new partnership for cohesion. Convergence competitiveness cooperation. Third report on economic and social cohesion. Office for Official Publications of the European Communities, Luxembourg

  • Funck B, Pizzati L (eds) (2003). European integration, regional policy and growth. World Bank, Washington D.C.,

  • Galor O (1996). Convergence? Inferences from theoretical models. Econ J 106: 1056–1069

    Article  Google Scholar 

  • Getis A (1995). Spatial filtering in a regression framework: examples using data on urban crime, regional inequality and government expenditures. In: Anselin, L and Florax, R (eds) New directions in spatial econometrics, pp 172–88. Springer, Berlin

    Google Scholar 

  • Getis A and Griffith DA (2002). Comparative spatial filtering in regression analysis. Geogr Anal 34: 130–140

    Article  Google Scholar 

  • Hart PE (1995). Galtonian regression across countries and the convergence of productivity. Oxf Bull Econ Stat 57: 287–293

    Article  Google Scholar 

  • Hawkins DS, Allen DM and Stromberg AJ (2001). Determining the number of components in mixture of linear models. Comput Stat Data Anal 38: 15–48

    Article  Google Scholar 

  • Le Gallo J and Ertur C (2003). Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980–1995. Pap Reg Sci 82: 175–201

    Article  Google Scholar 

  • Le Gallo J and Dall’erba S (2006). Evaluating the temporal and spatial heterogeneity of the European convergence process, 1980–1999. J Reg Sci 46: 269–288

    Article  Google Scholar 

  • López-Bazo E, Vayá E, Mora AJ and Suriñach J (1999). Regional economic dynamics and convergence in the European union. Ann Reg Sci 33: 343–370

    Article  Google Scholar 

  • Louis TA (1982). Finding the observed information matrix when using the EM algorithm. J R Stat Soc B 44: 226–233

    Google Scholar 

  • MacLachlan G and Peel D (2000). Finite mixture models. Wiley, New York

    Google Scholar 

  • Mankiw NG, Romer D and Weil DN (1992). A contribution to the empirics of economic growth. Q J Econ 107: 407–437

    Article  Google Scholar 

  • Martin P (1998). Can regional policies affect growth and geography in Europe?. World Econ 21: 757–774

    Article  Google Scholar 

  • Meliciani V and Peracchi F (2006). Convergence in per-capita GDP across European regions: a reappraisal. Empir Econ 31: 549–568

    Article  Google Scholar 

  • Neven D and Gouyette C (1995). Regional convergence in the European community. J Common Market Stud 33: 47–65

    Article  Google Scholar 

  • Paap R and van Dijk HK (1998). Distribution and mobility of wealth of nations. Eur Econ Rev 42: 1269–1293

    Article  Google Scholar 

  • Pagan A (1984). Econometric issues in the analysis of regressions with generated regressors. Int Econ Rev 25: 221–247

    Article  Google Scholar 

  • Petrakos G, Rodríguez-Pose A and Rovolis A (2005). Growth, integration, and regional disparities in the European union. Environ Plann A 37: 1837–1855

    Article  Google Scholar 

  • Quah DT (1993a). Empirical cross-section dynamics in economic growth. Eur Econ Rev 37: 426–434

    Article  Google Scholar 

  • Quah DT (1993b). Galton’s fallacy and tests of the convergence hypothesis. Scand J Econ 95: 427–443

    Article  Google Scholar 

  • Quah DT (1996a). Empirics for economic growth and convergence. Eur Econ Rev 40: 1353–1375

    Article  Google Scholar 

  • Quah DT (1996b). Twin peaks: growth and convergence in models of distribution dynamics. Econ J 106: 1045–1055

    Article  Google Scholar 

  • Quah DT (1996c). Regional convergence clusters across Europe. Eur Econ Rev 40: 951–958

    Article  Google Scholar 

  • Quah DT (1997). Empirics for growth and distribution: stratification, polarization and convergence clubs. J Econ Growth 2: 27–59

    Article  Google Scholar 

  • Rey SJ and Montouri BD (1999). US regional income convergence: a spatial econometric perspective. Reg Stud 33: 143–156

    Article  Google Scholar 

  • Sala-i-Martin X (1996a). The classical approach to convergence analysis. Econ J 106: 1019–1036

    Article  Google Scholar 

  • Sala-i-Martin X (1996b). Regional cohesion: evidence and theories of regional growth and convergence. Eur Econ Rev 40: 1325–1352

    Article  Google Scholar 

  • Solow RM (1999) Neoclassical growth theory. In: Taylor JB, Woodford M (eds) Handbook of macroeconomics, vol 1. North Holland, Amsterdam, pp 637–667

  • Temple JRW (1998). Robustness tests of the augmented Solow model. J Appl Econom 13: 361–375

    Article  Google Scholar 

  • Temple JRW (2000). Growth regressions and what the textbooks don’t tell you. Bull Econ Res 52: 181–205

    Article  Google Scholar 

  • Titterington DM, Smith AFM and Makov UE (1985). Statistical analysis of finite mixture distributions. Wiley, Chichester

    Google Scholar 

  • Tsionas EG (2000). Regional growth and convergence: evidence from the United States. Reg Stud 34: 231–238

    Article  Google Scholar 

  • Turner RT (2000). Estimating the propagation rate of a viral infection of potato plants via mixtures of regressions. Appl Stat 49: 371–384

    Google Scholar 

  • Wedel M and Kamakura WA (1998). Market segmentation: conceptual and methodological foundations. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco De Vaio.

Additional information

A previous version of the paper was presented at the International Workshop on Spatial Econometrics and Statistics, May 25–27, 2006, Rome, Italy. We wish to thank all the participants for their useful comments. Our acknowledgements to Rolf Turner and two anonymous referees for technical advice.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00181-007-0169-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battisti, M., De Vaio, G. A spatially filtered mixture of β-convergence regressions for EU regions, 1980–2002. Empirical Economics 34, 105–121 (2008). https://doi.org/10.1007/s00181-007-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-007-0168-8

Keywords

JEL Classification

Navigation