GMM estimation of a structural demand model for yogurt and the effects of the introduction of new brands

Abstract

The demand structure for yogurt is assumed to be properly described by a one level nested logit model that is applied to aggregate market data. Given the presence of endogenous regressors, suitably lagged endogenous variables (Arellano and Bover in J Econom 68:29–51, 1995; Blundell and Bond in J Econom 87:115–143, 1998) are proposed as instrumental variables. The validity of this set of instruments is discussed and price elasticities and marginal costs are recovered from the demand estimates. Total welfare gains associated to the introduction of two new brands by the same manufacturer are finally computed. Prices and profits decreased and total welfare increased.

This is a preview of subscription content, access via your institution.

References

  1. Ackerberg D (2001) Empirically distinguishing informative and prestige effects of advertising. RAND J Econ 32:316–333

    Article  Google Scholar 

  2. Ackerberg D, Rysman M (2005) Unobserved product differentiation in discrete choice models: estimating price elasticities and welfare effects. RAND J Econ 36:771–788

    Google Scholar 

  3. Ackerberg D, Benkard L, Berry S, Pakes A (2005) Econometric tools for analyzing market outcomes. In: Heckman JJ (ed) Handbook of econometrics. JAI Elsevier Science, Amsterdam (forthcoming)

  4. Ahn SC, Schmidt P (1995) Efficient estimation of models for dynamic panel data. J Econom 68:5–27

    Article  Google Scholar 

  5. Anderson S, De Palma A (1992) Multiproduct firms: a nested logit approach. J Ind Econ 40:261–276

    Article  Google Scholar 

  6. Anderson S, De Palma A (2001) Product diversity in asymmetric oligopoly: is the quality of consumer goods too low?. J Ind Econ 49:113–135

    Google Scholar 

  7. Anderson S, De Palma A, Thisse JF (1992) Discrete choice theory of product differentiation. Cambridge, MIT

    Google Scholar 

  8. Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58:277–297

    Article  Google Scholar 

  9. Arellano M, Bond S (1998) Dynamic panel data estimation using DPD98 for Gauss: a guide for users. Institute for Fiscal Studies. Available from http://www.ifs.org.uk

  10. Arellano M, Bover O (1995) Another look at the instrumental variables estimation of error components models. J Econom 68:29–51

    Article  Google Scholar 

  11. Arrow K (1962) Economic welfare and the allocation of resources for invention. In: Nelson R (eds.) The rate and direction on inventive activity. Princeton University Press, Princeton

    Google Scholar 

  12. Berry S (1994) Estimating discrete choice models of product differentiation. RAND J Econ 25:242–262

    Article  Google Scholar 

  13. Berry S, Pakes A (2001) Additional information for: comments on alternative models of demand for automobiles by Charlotte Wojcik. Econ lett 74:43–51

    Article  Google Scholar 

  14. Berry S, Pakes A (2005) The pure characteristics demand model. Int Econ Rev (forthcoming)

  15. Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Econometrica 63:841–890

    Article  Google Scholar 

  16. Biørn E (2000) Panel data with measurement errors: instrumental variables and GMM procedures combining levels and differences. Econom Rev 19:391–424

    Article  Google Scholar 

  17. Blundell R, Bond S (1998) Initial conditions and moment restrictions in dynamic panel data models. J Econom 87:115–143

    Article  Google Scholar 

  18. Blundell R, Bond S, Windmeijer F (2000) Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator. In: Baltagi B (ed) Advances in econometrics. Nonstationary panels, panel cointegration and dynamic panels, vol 15. JAI Elsevier Science, Amsterdam, pp 53–91

    Google Scholar 

  19. Bond S (2002) Dynamic panel data models: a guide to micro data methods and practice. Port Econ J 1:141–161

    Article  Google Scholar 

  20. Bresnahan T (1989) Empirical studies of industries with market power. In: Schmalensee R, Willig R (eds.) Handbook of industrial organization. Elsevier, Amsterdam, pp. 1011–1057

    Google Scholar 

  21. Bresnahan T, Gordon R (1997) The economics of new goods. In: Studies in income and wealth, vol 58. NBER, Chicago

  22. Bresnahan T, Schmalensee R (1987) The empirical renaissance in industrial economics: an overview. J Ind Econ 35:371–378

    Article  Google Scholar 

  23. Bresnahan T, Stern S, Trajtenberg M (1997) Market segmentation and the sources of rents from innovation: personal computers in the late 1980’s. RAND J Econ 28:17–44

    Article  Google Scholar 

  24. Caplin A, Nalebuff B (1991) Aggregation and imperfect competition: on the existence of equilibrium. Econometrica 59:25–59

    Article  Google Scholar 

  25. Cardell N (1989) Variance components structures for the extreme value and logistic distributions with application to models of heterogeneity. Econom Theory 13:185–213

    Article  Google Scholar 

  26. Chintagunta P, Kyriazidou E, Perktold J (2001) Panel data analysis of household brand choices. J Econom 103:111–153

    Article  Google Scholar 

  27. Dubé JP (2005) Product differentiation and mergers in the carbonated soft drink industry. J Econ Manage Strategy 14:879–904

    Article  Google Scholar 

  28. Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econometrica 50:1029–1054

    Article  Google Scholar 

  29. Hausman JA (1997) Valuation of new goods under perfect and imperfect competition. In: Gordon R (eds). The economics of new goods. Studies in income and wealth, vol 58. NBER, Chicago, pp 209–248

    Google Scholar 

  30. Hausman JA, Leonard GK (2002) The competitive effects of a new product introduction: a case study. J Ind Econ L3:237–263

    Google Scholar 

  31. Hausman JA, Leonard GK, Zona JD (1994) Competitive analysis with differentiated products. Ann Econ Stat 34:159–180

    Google Scholar 

  32. Hendel I (1999) Estimating multiple discrete choice models: an application to computerization returns. Rev Econ Stud 66:423–446

    Article  Google Scholar 

  33. Ivaldi M, Verboven F (2005) Quantifying the effects from horizontal mergers in European competition policy. Int J Ind Organ 23:669–691

    Article  Google Scholar 

  34. Lancaster K (1979) Variety, equity and efficiency: product variety in an industrial society. Columbia University Press, New York

    Google Scholar 

  35. Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory. Oxford University Press, New York

    Google Scholar 

  36. McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (eds) Frontiers of econometrics. Academic, New York, pp. 105–142

    Google Scholar 

  37. McFadden D (1981) Econometric models of probabilistic choice. In: Manski C, McFadden D (eds). Structural analysis of discrete data with econometric applications. MIT, Cambridge, pp. 198–272

    Google Scholar 

  38. Nevo A (2000a) Mergers with differentiated products: the case of the ready-to-eat cereal industry. RAND J Econ 31:395–421

    Article  Google Scholar 

  39. Nevo A (2000b) A Practitioner’s guide to estimation of random coefficients logit models of demand. J Econ Manage Strategy 9:513–548

    Article  Google Scholar 

  40. Nevo A (2001) Measuring market power in the ready-to-eat cereal industry. Econometrica 69:307–342

    Article  Google Scholar 

  41. Osservatorio del Mercato del Latte (2003) Annuario del latte. Università Cattolica Milano, Milano

    Google Scholar 

  42. Petrin A (2002) Quantifying the benefits of new products: the case of the Minivan. J Polit Econ 110:705–729

    Article  Google Scholar 

  43. Pinkse J, Slade ME (2002) Mergers, brand competition and the price of a pint. Eur Econ Rev 48:617–643

    Article  Google Scholar 

  44. Rodman D (2005) xtabond2: Stata module to extend xtabond dynamic panel data estimator. Center for Global Development, Washington. http://econpapers.repec.org/software/bocbocode/s435901.htm

  45. Schmalensee R (1978) Entry deterrence in the ready to eat breakfast cereal industry. Bell J Econ 9:305–327

    Article  Google Scholar 

  46. Staiger D, Stock JH (1997) Instrumental variables regression with weak instruments. Econometrica 65:557–586

    Article  Google Scholar 

  47. Stock JH, Yogo M (2002) Testing for weak instruments in linear IV regression. NBER, Technical working paper no. 284

  48. Trajtenberg M (1989) The welfare analysis of product innovations, with an application to computed tomography scanners. J Polit Econ 97:444–479

    Article  Google Scholar 

  49. Verboven F (1996) International price discrimination in the European car market. RAND J Econ 27:240–268

    Article  Google Scholar 

  50. Villas-Boas JM, Winer RS (1999) Endogeneity in brand choice models. Manage Sci 45:1324–1338

    Article  Google Scholar 

  51. Windmeijer F (2005) A finite sample correction for the variance of linear efficient two-step GMM estimators. J Econom 126:25–51

    Article  Google Scholar 

  52. Wojcik C (2000) Alternative models of demand for automobiles. Econ Lett 68:113–118

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marina Di Giacomo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giacomo, M.D. GMM estimation of a structural demand model for yogurt and the effects of the introduction of new brands. Empirical Economics 34, 537 (2008). https://doi.org/10.1007/s00181-007-0135-4

Download citation

Keywords

  • Nested logit
  • GMM
  • Yogurt
  • Instrumental variables
  • New products