Skip to main content

MD*ReX: Linking XploRe to Standard Spreadsheet Applications


We will show a methodology of incorporating a profound statistical software environment into a standard spreadsheet application. Our approach is based upon a client/server computing philosophy, which will enable the user of our client side application to choose between various types of servers according to his needs of computing power.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  • Bollerslev, T. (1986), Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics 31, 307–327.

    Article  MathSciNet  Google Scholar 

  • Engle, R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica 50, 987–1008.

    Article  MathSciNet  Google Scholar 

  • Feuerhake, J. (2001), MD*CRYPT — The XQS/XQC protocol,

  • Flury, B. & Riedwyl, H. (1988), Multivariate Analysis, A Practical Approach, Cambridge University Press.

  • Gouriéroux, C. (1997), ARCH Models and Financial Applications, New York: Springer-Verlag.

    Book  Google Scholar 

  • Härdle, W., Klinke, S. & Müller, M. (1999), XploRe Learning Guide, Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Härdle, W., Hlavka, Z. & Klinke, S. (2000), XploRe Application Guide, Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Härdle, W., Kleinow, T. & Tschernig, R. (2001), Web Quantlets for Time Series Analysis, The Annals of Mathematical Statistics 53(1), 179–188.

    Article  MathSciNet  Google Scholar 

  • Kaufman, L. & Rousseeuw, P.J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, New York: Wiley.

    Book  Google Scholar 

  • Kleinow, T. & Lehman, H. (2002), Client/Server based Statistical Computing, Computational Statistics (to appear).

  • Kleinow, T. & Thomas, M. (2000), Computational resources for extremes, Measuring Risk in Complex Stochastic Systems (Franke, J., Härdle, W. & Stahl, G. eds.) number 147 in Lecture Notes in Statistics, New York: Springer-Verlag.

    Google Scholar 

  • Knüsel, L. (1998), On the Accuracy of Statistical Distributions in Microsoft Excel, The Statistical Software Newsletter in Computational Statistics & Data Analysis 26, 375–379.

    Article  Google Scholar 

  • McCullough, B.D. & Wilson, B. (1999), On the Accuracy of Statistical Procedures in Microsoft Excel, Computational Statistics & Data Analysis 31, 27–37.

    Article  Google Scholar 

  • Neuwirth, E. & Baier, T. (2001), Embedding R in Standard Software, and the other way round, Proceedings of the 2nd International Workshop on Distributed Statistical Computing (Hornik, K. & Leisch, F. eds.), Vienna.

  • Ward, J.H. (1963). Hierarchical grouping to optimize an objective function, Journal of the American Statistical Association 58, 236–244.

    Article  MathSciNet  Google Scholar 

Download references


Financial Support was received by the Deutsche Forschungsgemeinschaft, SFB 373 (“Quantification und Simulation Ökonomischer Prozesse”), Humboldt-Universität zu Berlin.

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aydınlı, G., Härdle, W., Kleinow, T. et al. MD*ReX: Linking XploRe to Standard Spreadsheet Applications. Computational Statistics 17, 329–341 (2002).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Client/server computing
  • Statistical software in office applications
  • Proliferation of methods
  • GUI requirements
  • Net based spreadsheets