Skip to main content
Log in

Penalized function-on-function linear quantile regression

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We introduce a novel function-on-function linear quantile regression model to characterize the entire conditional distribution of a functional response for a given functional predictor. Tensor cubic B-splines expansion is used to represent the regression parameter functions, where a derivative-free optimization algorithm is used to obtain the estimates. Quadratic roughness penalties are applied to the coefficients to control the smoothness of the estimates. The optimal degree of smoothness depends on the quantile of interest. An automatic grid-search algorithm based on the Bayesian information criterion is used to estimate the optimum values of the smoothing parameters. Via a series of Monte-Carlo experiments and an empirical data analysis using Mary River flow data, we evaluate the estimation and predictive performance of the proposed method, and the results are compared favorably with several existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1:
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas SA, Xuan Y, Song X (2019) Quantile regression based methods for investigating rainfall trends associated with flooding and drought conditions. Water Resour Manag 33(12):4249–4264

    Article  Google Scholar 

  • Battagliola ML, Sørensen H, Tolver A, Staicu AM (2022) A bias-adjusted estimator in quantile regression for clustered data. Econ Stat 23:165–186

    MathSciNet  Google Scholar 

  • Beyaztas U, Shang HL (2022) Function-on-function linear quantile regression. Math Model Anal 27(2):322–341

    Article  MathSciNet  Google Scholar 

  • Beyaztas U, Shang HL (2023a) robflreg: robust functional linear regression. R package version 1.1. https://CRAN.R-project.org/package=robflreg

  • Beyaztas U, Shang HL (2023) Robust functional linear regression models. R J 15(1):212–233

    Article  Google Scholar 

  • Beyaztas U, Shang HL, Alin A (2022) Function-on-function partial quantile regression. J Agric Biol Environ Stat 27(1):149–174

    Article  MathSciNet  Google Scholar 

  • Briollais L, Durrieu G (2014) Application of quantile regression to recent genetic and -omic studies. Hum Genet 133(8):951–966

    Article  Google Scholar 

  • Cai X, Xue L, Cao J (2021) Robust penalized M-estimation for function-on-function linear regression. Stat 10(1):e390

    Article  MathSciNet  Google Scholar 

  • Cardot H, Crambes C, Sarda P (2005) Quantile regression when the covariates are functions. J Nonparametric Stat 17(7):841–856

    Article  MathSciNet  Google Scholar 

  • Cardot H, Crambes C, Sarda P (2007) Ozone pollution forecasting using conditional mean and conditional quantiles with functional covariates. In: Hardle W, Mori Y, Vieu P (eds) Statistical methods for biostatistics and related fields. Springer, Berlin, pp 221–243

    Chapter  Google Scholar 

  • Cartis C, Roberts L, Sheridan-Methven O (2022) Escaping local minima with local derivative-free methods: a numerical investigation. Optimization 71(8):2346–2373

    Article  MathSciNet  Google Scholar 

  • Chaouch M, Bouchentouf AA, Traore A, Rabhi A (2020) Single functional index quantile regression under general dependence structure. J Nonparametric Stat 32(3):725–755

    Article  MathSciNet  Google Scholar 

  • Chen K, Müller H-G (2012) Conditional quantile analysis when covariates are functions, with application to growth data. J R Stat Soc Ser B 74(1):67–89

    Article  MathSciNet  Google Scholar 

  • Chowdhury J, Chaudhuri P (2019) Nonparametric depth and quantile regression for functional data. Bernoulli 25(1):395–423

    Article  MathSciNet  Google Scholar 

  • Crainiceanu CM, Staicu A-M, Di C (2009) Generalized multilevel functional regression. J Am Stat Assoc Theory Methods 104(488):177–194

    MathSciNet  Google Scholar 

  • Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Inference 147:1–23

    Article  MathSciNet  Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2007) Robust estimation and classification for functional data via projection-based depth functions. Comput Stat 22(3):481–496

    Article  Google Scholar 

  • Dodge Y, Whittaker J (2009) Partial quantile regression. Metrika 70(1):35–57

    Article  MathSciNet  Google Scholar 

  • Eilers PHC, Roder E, Savelkoul HFJ, van Wijk RG (2012) Quantile regression for the statistical analysis of immunological data with many non-detects. BMC Immunol 13:37

    Article  Google Scholar 

  • Fernandes M, Guerre E, Horta E (2021) Smoothing quantile regression. J Bus Econ Stat 39(1):338–357

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    Google Scholar 

  • Ferraty F, Rabhi A, Vieu P (2005) Conditional quantiles for dependent functional data with application to the climatic El Nino phenomenon. Sankhya Indian J Stat 67(2):378–398

    MathSciNet  Google Scholar 

  • Fraiman R, Pateiro-Lopez B (2012) Quantiles for finite and infinite dimensional data. J Multivar Anal 108:1–14

    Article  MathSciNet  Google Scholar 

  • Guo M, Zhou L, Huang JZ, Hardle WK (2015) Functional data analysis of generalized regression quantiles. Stat Comput 25(2):189–202

    Article  MathSciNet  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35(1):70–91

    Article  MathSciNet  Google Scholar 

  • He X, Pan X, Tan KM, Zhou W-X (2023) conquer: convolution-type smoothed quantile regression. R package version 1.3.3. https://CRAN.R-project.org/package=conquer

  • Horvath L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Hsing T, Eubank R (2015) Theoretical foundations of functional data analysis, with an introduction to linear operators. Wiley, Chennai

    Book  Google Scholar 

  • Ivanescu AE, Staicu AM, Scheipl F, Greven S (2015) Penalized function-on-function regression. Comput Stat 30(2):539–568

    Article  MathSciNet  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40(6):3108–3136

    Article  MathSciNet  Google Scholar 

  • Kim MO (2007) Quantile regression with varying coefficients. Ann Stat 35(1):92–108

    Article  MathSciNet  Google Scholar 

  • Koenker R, Bassett-Jr. G (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  Google Scholar 

  • Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81(4):673–680

    Article  MathSciNet  Google Scholar 

  • Kokoszka P, Reimherr M (2015) Introduction to functional data analysis. CRC Press, London

    Google Scholar 

  • Lara S, Tim B, Sindana I, Paige S, Rupa B, Tarik B (2019) A quantile regression approach to examine fine particles, term low birth weight, and racial/ethnic disparities. Environ Epidemiol 3(4):e060

    Article  Google Scholar 

  • Lee ER, Noh H, Park BU (2014) Model selection via Bayesian information criterion for quantile regression models. J Am Stat Assoc Theory Methods 109(505):216–229

    Article  MathSciNet  Google Scholar 

  • Lehn F, Bahrs E (2018) Quantile regression of German standard farmland values: Do the impacts of determinants vary across the conditional distribution? J Agric Appl Econ 50(4):674–683

    Article  Google Scholar 

  • Li M, Wang K, Maity A, Staicu A-M (2022) Inference in functional linear quantile regression. J Multivar Anal 190:104985

    Article  MathSciNet  Google Scholar 

  • Liu Y, Li M, Morris JS (2020) Function-on-scalar quantile regression with application to mass spectrometry proteomics data. Ann Appl Stat 114(2):521–541

    MathSciNet  Google Scholar 

  • Ma H, Li T, Zhu H, Zhu Z (2019) Quantile regression for functional partially linear model in ultra-high dimensions. Comput Stat Data Anal 129:135–147

    Article  MathSciNet  Google Scholar 

  • Magzamen S, Amato MS, Imm P, Havlena JA, Coons MJ, Anderson HA, Kanarek MS, Moore CF (2015) Quantile regression in environmental health: early life lead exposure and end-of-grade exams. Environ Res 137:108–119

    Article  Google Scholar 

  • Nychka D, Gray G, Haaland P, Martin D, O’Connell M (1995) A nonparametric regression approach to syringe grading for quality improvement. J Am Stat Assoc Appl Case Stud 90(432):1171–1178

    Article  Google Scholar 

  • Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives, Technical Report DAMTP 2009/NA06, University of Cambridge, England. https://optimization-online.org/2010/05/2616/

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis. Springer, New York

    Google Scholar 

  • Ramsay JO, Silverman BW (2006) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Sang P, Cao J (2020) Functional single-index quantile regression models. Stat Comput 30(4):771–781

    Article  MathSciNet  Google Scholar 

  • Schwarz G (1987) Estimating the dimension of a model. Ann Stat 6(2):461–464

    MathSciNet  Google Scholar 

  • Serfling R, Wijesuriya U (2017) Depth-based nonparametric description of functional data, with emphasis on use of spatial depth. Comput Stat Data Anal 105:24–45

    Article  MathSciNet  Google Scholar 

  • Sun Y, Genton MG (2011) Functional boxplots. J Comput Graph Stat 20(2):316–334

    Article  MathSciNet  Google Scholar 

  • Tang Q, Cheng L (2014) Partial functional linear quantile regression. Sci China Math 57(12):2589–2608

    Article  MathSciNet  Google Scholar 

  • Vasseur SP, Aznarte JL (2021) Comparing quantile regression methods for probabilistic forecasting of \(NO_2\) pollution levels. Sci Rep 11:11592

    Article  Google Scholar 

  • Walsh GR (1975) Methods of optimization. Wiley, New York

    Google Scholar 

  • Wang HJ, Zhu Z, Zhou J (2009) Quantile regression in partially linear varying coefficient models. Ann Stat 37(6):3841–3866

    MathSciNet  Google Scholar 

  • Wilcox R (2012) Introduction to robust estimation and hypothesis testing. Elsevier, Waltham

    Google Scholar 

  • Yang H, Baladandayuthapani V, Rao AUK, Morris JS (2020) Quantile function on scalar regression analysis for distributional data. J Am Stat Assoc Appl Case Stud 115(529):90–106

    Article  MathSciNet  Google Scholar 

  • Yao F, Sue-Chee S, Wang F (2017) Regularized partially functional quantile regression. J Multivar Anal 156:39–56

    Article  MathSciNet  Google Scholar 

  • Yu D, Kong L, Mizera I (2016) Partial functional linear quantile regression for neuroimaging data analysis. Neurocomputing 195:74–87

    Article  Google Scholar 

  • Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data Anal 50(3):813–829

    Article  MathSciNet  Google Scholar 

  • Zhang P (1993) Model selection via multifold cross validation. Ann Stat 21(1):299–313

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Lian H, Li G, Zhu Z (2021) Functional additive quantile regression. Stat Sin 31:1331–1351

    MathSciNet  Google Scholar 

  • Zhang Z, Wang X, Kong L, Zhu H (2021) High-dimensional spatial quantile function-on-scalar regression. J Am Stat Assoc Theory Methods 31:1331–1351

    Google Scholar 

  • Zheng S (2011) Gradient descent algorithms for quantile regression with smooth approximation. Int J Mach Learn Cybern 2(3):191

    Article  Google Scholar 

  • Zhou Z (2021) Fast implementation of partial least squares for function-on-function regression. J Multivar Anal 185:104769

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Zhang W, Lin H, Lian H (2022) Partially linear functional quantile regression in a reproducing kernel Hilbert space. J Nonparametric Stat 34(4):789–803

    Article  MathSciNet  Google Scholar 

  • Zhu H, Li Y, Liu B, Yao W, Zhang R (2022) Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions. Can J Stat 50(1):267–286

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank an Associate Editor and two reviewers for their careful reading of our manuscript and for their valuable suggestions and comments, which have helped us produce an improved version of our article. The second author thanks financial support from an Australian Research Council Discovery Project DP230102250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Beyaztas.

Ethics declarations

Funding

No funding was received to assist with the preparation of this manuscript.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Code availability

Example scripts for the Monte-Carlo experiments and the empirical data example are available at https://github.com/UfukBeyaztas/pflqr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyaztas, U., Shang, H.L. & Saricam, S. Penalized function-on-function linear quantile regression. Comput Stat (2024). https://doi.org/10.1007/s00180-024-01494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-024-01494-1

Keywords

Navigation