Skip to main content
Log in

Solving linear Bayesian inverse problems using a fractional total variation-Gaussian (FTG) prior and transport map

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The Bayesian inference is widely used in many scientific and engineering problems, especially in the linear inverse problems in infinite-dimensional setting where the unknowns are functions. In such problems, choosing an appropriate prior distribution is an important task. Especially when the function to infer has much detail information, such as many sharp jumps, corners, and the discontinuous and nonsmooth oscillation, the so-called total variation-Gaussian (TG) prior is proposed in function space to address it. However, the TG prior is easy to lead the blocky (staircase) effect in numerical results. In this work, we present a fractional order-TG (FTG) hybrid prior to deal with such problems, where the fractional order total variation (FTV) term is used to capture the detail information of the unknowns and simultaneously uses the Gaussian measure to ensure that it results in a well-defined posterior measure. For the numerical implementations of linear inverse problems in function spaces, we also propose an efficient independence sampler based on a transport map, which uses a proposal distribution derived from a diagonal map, and the acceptance probability associated to the proposal is independent of discretization dimensionality. And in order to take full advantage of the transport map, the hierarchical Bayesian framework is applied to flexibly determine the regularization parameter. Finally we provide some numerical examples to demonstrate the performance of the FTG prior and the efficiency and robustness of the proposed independence sampler method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adams R (1975) Sobolev Spaces. Academic Press, New York

    MATH  Google Scholar 

  • Babacan S, Molina R, Katsaggelos A (2008) Variational bayesian blind deconvolution using a total variation prior. IEEE Trans Image Process 18(1):12–26

    Article  MathSciNet  MATH  Google Scholar 

  • Bonnotte N (2013) From knothe’s rearrangement to brenier’s optimal transport map. SIAM J Math Anal 45:64–87

    Article  MathSciNet  MATH  Google Scholar 

  • Byrd R, Gilbert J, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89:149–185

    Article  MathSciNet  MATH  Google Scholar 

  • Carlier G, Galichon A, Santambrogio F (2010) From knothe’s transport to brenier’s map and a continuation method for optimal transport. SIAM J Math Anal 41(6):2554–2576

    Article  MathSciNet  MATH  Google Scholar 

  • Cotter S, Roberts G, Stuart A, White D (2013) MCMC methods for functions: Modifying old algorithms to make them faster, Stati Sci 28(3)

  • Cui T, Law K, Marzouk Y (2016) Dimension-independent likelihood-informed mcmc. J Comput Phys 304:109–137

    Article  MathSciNet  MATH  Google Scholar 

  • Dashti M, Law K, Stuart A, Voss J (2013) MAP estimators and their consistency in bayesian nonparametric inverse problems. Inverse Prob 29(9):095017

    Article  MathSciNet  MATH  Google Scholar 

  • Dashti M, Stuart A (2015) The bayesian approach to inverse problems, In: Handbook of Uncertainty Quantification, Springer International Publishing p 1–118

  • Feng Z, Li J (2018) An adaptive independence sampler mcmc algorithm for bayesian inferences of functions. SIAM J Sci Comput 40(3):A1301–A1321

    Article  MathSciNet  MATH  Google Scholar 

  • Gamerman D, Lopes H (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference, CRC Press

  • Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013) Bayesian data analysis, Chapman and Hall/CRC

  • Jin B, Zou J (2010) Hierarchical bayesian inference for ill-posed problems via variational method. J Comput Phys 229(19):7317–7343

    Article  MathSciNet  MATH  Google Scholar 

  • Johansson B, Lesnic D (2007) A variational method for identifying a spacewise-dependent heat source. IMA J Appl Math 72(6):748–760

    Article  MathSciNet  MATH  Google Scholar 

  • Johansson T, Lesnic D (2007) Determination of a spacewise dependent heat source. J Comput Appl Math 209(1):66–80

    Article  MathSciNet  MATH  Google Scholar 

  • Kaipio J, Somersalo E (2005) Statistical and computational inverse problems, Springer-Verlag

  • Kass R, Carlin B, Gelman A, Neal R (1998) Markov chain montecarlo in practice: a roundtable discussion. Am Stat 52(2):93–100

    Google Scholar 

  • Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations, Elsevier

  • Kleywegt A, Shapiro A, Mello T (2002) The sample average approximation method for stochastic discrete optimization. SIAM J Optim 12(2):479–502

    Article  MathSciNet  MATH  Google Scholar 

  • Lassas M, Siltanen S (2004) Can one use total variation prior for edge-preserving bayesian inversion? Inverse Prob 20(5):1537

    Article  MathSciNet  MATH  Google Scholar 

  • Li L, Jafarpour B (2010) Effective solution of nonlinear subsurface flow inverse problems in sparse bases. Inverse Prob 26(10):105016

    Article  MathSciNet  MATH  Google Scholar 

  • Martin J, Wilcox L, Burstedde C, Ghattas O (2012) A stochastic newton mcmc method for large-scale statistical inverse problems with application to seismic inversion. SIAM J Sci Comput 34(3):A1460–A1487

    Article  MathSciNet  MATH  Google Scholar 

  • Marzouk Y, Moselhy T, Parno M, Spantini A (2016) Sampling via measure transport: an introduction, In: Handbook of Uncertainty Quantification, Springer International Publishing p 1–41

  • Moselhy T, Marzouk Y (2012) Bayesian inference with optimal maps. J Comput Phys 231(23):7815–7850

    Article  MathSciNet  MATH  Google Scholar 

  • Mueller J, Siltanen S (2012) Linear and nonlinear inverse problems with practical applications. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Book  MATH  Google Scholar 

  • Parno M, Marzouk Y (2018) Transport map accelerated markov chain monte carlo. SIAM/ASA J Uncertain Quantif 6(2):645–682

    Article  MathSciNet  MATH  Google Scholar 

  • Peherstorfer B, Marzouk Y (2019) A transport-based multifidelity preconditioner for markov chain monte carlo. Adv Comput Math 45(5–6):2321–2348

    Article  MathSciNet  MATH  Google Scholar 

  • Radon J (1986) On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging 5(4):170–176

    Article  Google Scholar 

  • Robert C, Casella G, Casella G (2004) Monte Carlo statistical methods, vol. 2, Springer

  • Roberts G, Rosenthal J (2001) Optimal scaling for various metropolis-hastings algorithms. Stat Sci 4:351–67

    MathSciNet  MATH  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  • Samko S, Kilbas A, Marichev O (1993) Fractional integrals and derivatives: theory and applications, CRC Press

  • Stuart A (2010) Inverse problems: A bayesian perspective. Acta Numer 19:451–559

    Article  MathSciNet  MATH  Google Scholar 

  • Tierney L (1998) A note on metropolis-hastings kernels for general state spaces, Ann Appl Probab, p 1–9

  • Tierney L (1994) Markov chains for exploring posterior distributions. Annal Stat Pages 1:1701–1728

    MathSciNet  MATH  Google Scholar 

  • Vershik A (2013) Long history of the Monge-Kantorovich transportation problem. Math Intell 35(4):1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Villani C (2003) Topics in optimal transportation: american mathematical society, Grad Stud Math, 58

  • Villani C (2009) Optimal transport: old and new, Vol. 338, Springer

  • Vogel C (2002) Computational methods for inverse problems, Soc Ind Appl Math

  • Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Wang L, Ding M, Zheng G. A general fractional total variation-Gaussian (GFTG) prior for Bayesian inverse problems, arXiv:2111.02797

  • Wang L, Ding M, Zheng G. A Hadamard fractioal total variation-Gaussian (HFTG) prior for Bayesian inverse problems, arXiv:2110.15656

  • Yan L, Fu C, Dou F (2010) A computational method for identifying a Spacewise-dependent heat source. Int J Numer Methods Biomed Eng 26(5):597–608

    MathSciNet  MATH  Google Scholar 

  • Yao Z, Hu Z, Li J (2016) A TV-gaussian prior for infinite-dimensional bayesian inverse problems and its numerical implementations. Inverse Prob 32(7):075006

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Chen K (2015) A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J Imag Sci 8(4):2487–2518

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Chen K (2015) Variational image registration by a total fractional-order variation model. J Comput Phys 293:442–461

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the NSF of China (12271151) and NSF of Hunan (2020JJ4166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hui Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zheng, GH. Solving linear Bayesian inverse problems using a fractional total variation-Gaussian (FTG) prior and transport map. Comput Stat 38, 1811–1849 (2023). https://doi.org/10.1007/s00180-023-01332-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01332-w

Keywords

Navigation