Skip to main content
Log in

Robust singular spectrum analysis: comparison between classical and robust approaches for model fit and forecasting

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Singular spectrum analysis is a powerful and widely used non-parametric method to analyse and forecast time series. Although singular spectrum analysis has proven to outperform traditional parametric methods for model fit and model forecasting, one of the steps of this algorithm is the singular value decomposition of the trajectory matrix, which is very sensitive to the presence of outliers because it uses the \(L_{2}\) norm optimization. Therefore the presence of outlying observations have a significant impact on the singular spectrum analysis reconstruction and forecasts. The main aim of this paper is to introduce four robust alternatives to the singular spectrum analysis, where the singular value decomposition is replaced by the: (i) robust regularized singular value decomposition; (ii) robust principal component analysis algorithm, which combines projection pursuit ideas with robust scatter matrix estimation; (iii) robust principal component analysis based on the grid algorithm and projection pursuit; and (iv) robust principal component analysis based on a robust covariance matrix. The four proposed robust singular spectrum analysis alternatives are compared with the classical singular spectrum analysis and other available robust singular spectrum analysis algorithms, in terms of model fit and model forecasting via Monte Carlo simulations based on synthetic and real data, considering several contamination scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bolin D, Guttorp P, Januzzi A, Jones D, Novak M, Podschwit H, Richardson L, Särkkä A, Sowder C, Zimmerman A (2015) Statistical prediction of global sea level from global temperature. Statistica Sinica 25:351–367

    MATH  Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, New York

    Book  MATH  Google Scholar 

  • Candè EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  Google Scholar 

  • Croux C, Haesbroeck G (2000) Principal components analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 87:603–618

    Article  MATH  Google Scholar 

  • Croux C, Ruiz-Gazen A (1996) A fast algorithm for robust principal components based on projection pursuit. In: Prat A (ed) Proceedings in computational statistics, COMP-STAT. Physica-Verlag, Heidelberg, pp 211–216

    Google Scholar 

  • Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection–pursuit approach revisited. J Multivar Anal 95(1):206–226

    Article  MATH  Google Scholar 

  • Croux C, Filzmoser P, Oliveira M (2007) Algorithms for projection–pursuit robust principal component analysis. Chemom Intell Lab Syst 87:218–225

    Article  Google Scholar 

  • Devlin SJ, Gnanadesikan R, Kettenring JR (1981) Robust estimation of dispersion matrices and principal components. J Am Stat Assoc 76(374):354–362

    Article  MATH  Google Scholar 

  • Dürre A, Fried R, Liboschik T (2015) Robust estimation of (partial) autocorrelation. Wiley Interdiscip Rev Comput Stat 7(3):205–222

    Article  Google Scholar 

  • Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis. Springer, New York

    Book  Google Scholar 

  • Filzmoser P, Serneels S, Croux C, Van Espen PJ (2006) Robust multivariate methods: the projection pursuit approach. In: Spiliopoulou M, Kruse R, Borgelt C, Nürnberger A, Gaul W (eds) From data and information analysis to knowledge engineering. Springer, Berlin, pp 270–277. https://doi.org/10.1007/3-540-31314-1_32

    Chapter  Google Scholar 

  • Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Yiou P (2002) Advanced spectral methods for climate time series. Rev Geophys 40:1–41

    Article  Google Scholar 

  • Golyandina N (2020) Particularities and commonalities of singular spectrum analysis as a method of time series analysis and signal processing. Wiley Interdiscip Rev Comput Stat 12(4):e1487

    Article  Google Scholar 

  • Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer, Berlin. https://doi.org/10.1007/978-3-642-34913-3

    Book  MATH  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5(2):239–257

    Article  Google Scholar 

  • Hassani H (2008) Singular spectrum analysis based on the minimum variance estimator. Nonlinear Anal Real World Appl 11(3):2065–2077

    Article  MATH  Google Scholar 

  • Hassani H, Zhigljavsky A (2009) Singular spectrum analysis: methodology and application to economics data. J Syst Sci Complex 22(3):372–394

    Article  Google Scholar 

  • Hassani H, Mahmoudvand R, Omer HN, Silva ES (2014) A preliminary investigation into the effect of outlier(s) on singular spectrum analysis. Fluct Noise Lett 13(4):1450029

    Article  Google Scholar 

  • Hawkins DM, Liu L, Young S (2001) Robust singular value decomposition. National institute of statistical science technical report 122 (http://www.niss.org/sites/default/files/pdfs/technicalreports/tr122.pdf)

  • Huang JZ, Shen H, Buja A (2009) The analysis of two-way functional data using two-way regularized singular value decompositions. J Am Stat Assoc 104(488):1609–1620

    Article  MATH  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Hubert M, Rousseeuw PJ, Branden KV (2005) Robpca: a new approach to robust principal component analysis. Technometrics 47(1):64–79

    Article  Google Scholar 

  • Hubert M, Rousseeuw PJ, Van Aelst S (2008) High-breakdown robust multivariate methods. Stat Sci 23(1):92–119

    Article  MATH  Google Scholar 

  • Kalantari M, Yarmohammadi M, Hassani H (2012) Singular spectrum analysis based on L1-norm. Fluct Noise Lett 15(01):1650009. https://doi.org/10.1142/S0219477516500097

    Article  Google Scholar 

  • Kumar N, Nasser M, Sarker SC (2011) A new singular value decomposition based robust graphical clustering technique and its application in climatic data. J Geogr Geol 3(1):227–238

    Google Scholar 

  • Li G, Chen Z (1985) Projection–pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J Am Stat Assoc 80(391):759–766

    Article  MATH  Google Scholar 

  • Locantore N, Marron JS, Simpson DG, Tripoli N, Zhang JT, Cohen KL (1999) Principal component analysis for functional data. Test 8(1):1–73

    Article  MATH  Google Scholar 

  • Mahmoudvand R, Rodrigues PC (2018) A new parsimonious recurrent forecasting model in singular spectrum analysis. J Forecast 37(2):191–200

    Article  MATH  Google Scholar 

  • Maronna R (2005) Principal components and orthogonal regression based on robust scales. Technometrics 47(3):264–273

    Article  Google Scholar 

  • Maronna R, Martin D, Yohai VJ (2019) Robust statistics: theory and methods. Wiley, Hoboken

    MATH  Google Scholar 

  • Na Campbell (1980) Procedures in multivariate analysis I: robust covariance estimation. Appl Stat 29:231–237

    Article  Google Scholar 

  • Naga R, Antille G (1990) Stability of robust and non-robust principal component analysis. Comput Stat Data Anal 10(2):169–174

    Article  MATH  Google Scholar 

  • Reisen VA, Molinares FF (2012) Robust estimation in time series with long and short memory properties. Annales Mathematicae et Informaticae 39:207–224

    MATH  Google Scholar 

  • Rodrigues PC, Mahmoudvand R (2018) The benefits of multivariate singular spectrum analysis over the univariate version. J Frankl Inst 355(1):544–564

    Article  MATH  Google Scholar 

  • Rodrigues PC, Monteiro A, Lourenço V (2016) A Robust additive main effects and multiplicative interaction model for the analysis of genotype-by-environment data. Bioinformatics 32(1):58–66

    Google Scholar 

  • Rodrigues PC, Lourenço V, Mahmoudvand R (2018) A robust approach to singular spectrum analysis. Qual Reliab Eng Int 34(7):1437–1447

    Article  Google Scholar 

  • Rodrigues PC, Tuy PG, Mahmoudvand R (2018) Randomized singular spectrum analysis for long time series. J Stat Comput Simul 88(10):1921–1935

    Article  MATH  Google Scholar 

  • Rodrigues PC, Pimentel J, Messala P, Kazemi M (2020) The decomposition and forecasting of mutual investment funds using singular spectrum analysis. Entropy 22(1):83

    Article  Google Scholar 

  • Rousseeuw P, Perrotta D, Riani M, Hubert M (2019) Robust monitoring of time series with application to fraud detection. Econom Stat 9:108–121

    Google Scholar 

  • Todorov V, Filzmoser P (2009) An object oriented framework for robust multivariate analysis. J Stat Softw 32(3):1–47

    Article  Google Scholar 

  • Todorov V, Neykov NM, Neytchev PN (1994) Stability of (high-breakdown point) robust principal components analysis. In: Dutter R, Grossmann W (eds) Short communications in computational statistics. Physica-Verlag, Heidelberg, pp 90–92

    Google Scholar 

  • Trickett S, Burroughs L, Milton A (2012) Robust Rank-Reduction Filtering for Erratic Noise. In: SEG technical program expanded abstracts. https://doi.org/10.1190/segam2012-0129.1

  • Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena 35(3):395–424

    Article  MATH  Google Scholar 

  • Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S (2015) Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans Geosci Remote Sens 53(8):4418–4433

    Article  Google Scholar 

  • Zabalza J, Qing C, Yuen P, Sun G, Zhao H, Ren J (2018) Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging. J Frank Inst 355(4):1733–1751

    Article  Google Scholar 

  • Zhang R, Tong H (2019) Robust principal component analysis with adaptive neighbors. Adv Neural Inf Process Syst 32:6961–6969

    Google Scholar 

  • Zhang L, Shen H, Huang JZ (2013) Robust regularized singular value decomposition with application to mortality data. Ann Appl Stat 7(3):1540–1561

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers, associate editor and guest editors for their valuable comments and suggestions which significantly improved the presentation of paper and led to put more details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M., Rodrigues, P.C. Robust singular spectrum analysis: comparison between classical and robust approaches for model fit and forecasting. Comput Stat (2023). https://doi.org/10.1007/s00180-022-01322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00180-022-01322-4

Keywords

Navigation