Skip to main content

Advertisement

Log in

Bayesian spatial quantile modeling applied to the incidence of extreme poverty in Lima–Peru

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Peru is an emerging nation with a nonuniform development where the growth is focused on some specific cities and districts, as a result there is serious economic inequalities across the country. Despite the poverty in Peru has declined in the last decades, there is still poor districts in risk to become extremely poor, even in its capital, Lima. In this context, it is relevant to study the incidence of extreme poverty at district levels. In this paper, we propose to estimate the quantiles of the incidence of extreme poverty of districts in Lima by using spatial quantile models based on the Kumaraswamy distribution and spatial random effects for areal data. Furthermore, in order to deal with spatial confounding random effects we used the Spatial Orthogonal Centroid “K”orrection approach. Bayesian inference for these hierarchical models is conveniently performed based on the Hamiltonian Monte Carlo method. Our modeling is flexible and able to describe the quantiles of incidence of extreme poverty in Lima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkire S, Foster J, Seth S, Santos M, Roche J, Ballon P (2015) Some regression models for AF measures, chap 10. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780199689491.003.0010

    Book  Google Scholar 

  • Alvi E, Senbeta A (2014) Foreign aid, growth, and poverty relation: a quantile regression approach. J Dev Areas 48(3):381–403

    Article  Google Scholar 

  • Assunção G (2018) Regressão espacial quantílica para previsão da velocidade do vento. Dissertation, Departamento de Estatistica, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

  • Azevedo DRM, Prates MO, Bandyopadhyay D (2021) Alleviating spatial confounding in multivariate disease mapping models. J Agric Biol Environ Stat 26(3):464–491

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee S, Carlin B, Gelfand A (2014) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC, New York

    Book  MATH  Google Scholar 

  • Bayes C, Bazán J, Castro M (2017) A quantile parametric mixed regression model for bounded response variables. Stat Interface 10:483–493

    Article  MATH  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36(2):192–236

    MathSciNet  MATH  Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Camargo A, Hurtado Tarazona A (2011) Vivienda y pobreza: una relación compleja. marco conceptual y caracterización de Bogotá. Cuad Vivienda Urban 4:224–246

    Google Scholar 

  • Congdon P (2017) Quantile regression for overdispersed count data: a hierarchical method. J Stat Distrib Appl. https://doi.org/10.1186/s40488-017-0073-4

    Article  MATH  Google Scholar 

  • Dupont E, Wood Wood SN, Augustin N (2022) Spatial+: a novel approach to spatial confounding. Biometrics. https://doi.org/10.1111/biom.13656(accepted)

  • Flores SE, Prates MO, Bazán JL, Bolfarine HB (2020) Spatial regression models for bounded response variables with evaluation of the degree of dependence. Stat Interface 14(2):95–107

    Article  MathSciNet  MATH  Google Scholar 

  • Foster J, Greer J, Thorbecke E (1984) A class of decomposable poverty measures. Econometrica 52(3):761–766

    Article  MATH  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bayesian statistics, vol 4. Clarendon Press, Oxford, pp 169–193

  • Habyarimana F, Zewotir T, Ramroop S (2015) Determinants of poverty of households in Rwanda: an application of quantile regression. J Hum Ecol 50(1):19–30. https://doi.org/10.1080/09709274.2015.11906856

    Article  Google Scholar 

  • Hefley TJ, Hooten MB, Hanks EM, Russell RE, Walsh DP (2017) The Bayesian group Lasso for confounded spatial data. J Agric Biol Environ Stat 22(1):42–59

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman M, Gelman A (2011) The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15:1593–1623

    MathSciNet  MATH  Google Scholar 

  • Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc B 75(1):139–159

    Article  MathSciNet  MATH  Google Scholar 

  • Jin X, Carlin BP, Banerjee S (2005) Generalized hierarchical multivariate CAR models for areal data. Biometrics 61(4):950–961

    Article  MathSciNet  MATH  Google Scholar 

  • Keeley B (2015) How does income inequality affect our lives? In: Income inequality: the gap between rich and poor. OECD Insights, Paris. https://doi.org/10.1787/9789264246010-en

  • Kumaraswamy P (1980) A generalized probability density function for double-bounded random processes. J Hydrol 46(1,2):79–88

    Article  Google Scholar 

  • Leroux BG, Lei X, Breslow N (2000) Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical models in epidemiology, the environment, and clinical trials, vol 116. Springer, New York, pp 179–191

  • Mitnik PA, Baek S (2013) The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation. Stat Pap 54:177–192. https://doi.org/10.1007/s00362-011-0417-y

    Article  MathSciNet  MATH  Google Scholar 

  • Ortiz Martínez JdC (2006) Fecundidad y pobreza en el Perú: 1996, 2000 y 2004. Technical report, Centro de Investigación y Desarrollo del Instituto Nacional de Estadística e Informática (INEI), Lima, Perú. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib0688/Libro.pdf

  • Padellini T, Rue H (2019) Model-aware quantile regression for discrete data. https://doi.org/10.48550/arXiv.1804.03714. arXiv:1804.03714(unpublished)

  • Pereira JB, Nobre WS, Silva IF, Schmidt AM (2020) Spatial confounding in hurdle multilevel beta models: the case of the Brazilian mathematical olympics for public schools. J R Stat Soc A Stat Soc 183(3):1051–1073

    Article  MathSciNet  Google Scholar 

  • Prates MO, Assunção RM, Rodrigues EC (2019) Alleviating spatial confounding for areal data problems by displacing the geographical centroids. Bayesian Anal 14(2):623–647. https://doi.org/10.1214/18-BA1123

    Article  MathSciNet  MATH  Google Scholar 

  • Rahman MA (2013) Household characteristics and poverty: a logistic regression analysis. J Dev Areas 47(1):303–317

    Article  Google Scholar 

  • Reich B, Fuentes M, Dunson D (2011) Bayesian spatial quantile regression. J Am Stat Assoc 106(493):6–20

    Article  MathSciNet  MATH  Google Scholar 

  • Reich BJ, Hodges JS, Zadnik V (2006) Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62(4):1197–1206

    Article  MathSciNet  MATH  Google Scholar 

  • Stan Development Team (2021) Stan modeling language users guide and reference manual, 2.28.0. http://mc-stan.org/

  • Thaden H, Kneib T (2018) Structural equation models for dealing with spatial confounding. Am Stat 72(3):239–252

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Carlos Garcia would like to thank Pontifícia Universidad Católica del Peru, for the financial support provided through the “Programa de Apoyo a la Investigación para Estudiantes de Posgrado (PAIP)-2019”. Zaida Quiroz would like to thank Pontifícia Universidad Católica del Peru, for the financial support provided through the project DGI-000000000000740. Marcos O. Prates acknowledges partial funding support from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), grants 436948/2018-4 and PQ-307457/2018-4, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, C., Quiroz, Z. & Prates, M. Bayesian spatial quantile modeling applied to the incidence of extreme poverty in Lima–Peru. Comput Stat 38, 603–621 (2023). https://doi.org/10.1007/s00180-022-01235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-022-01235-2

Keywords

Navigation