Skip to main content

Two generalized nonparametric methods for estimating like densities


This article presents two generalized nonparametric methods for estimating multiple, possibly like, densities. The first generalization contains the Nadaraya–Watson estimator, the Jones et al. (Biometrika 82(2):327–338, 1995) bias reduction estimator, and Ker (Stat Probab Lett 117:23–30, 2016) possibly similar estimator as special cases. The second generalization contains the Nadaraya–Watson estimator, Ker (2016) possibly similar estimator, and the conditional density estimator of Hall et al. (J Am Stat Assoc 99(468):1015–1026, 2004) as special cases. The generalizations do not require knowledge of the form or extent of likeness between the unknown densities; an attractive feature in empirical applications. Numerical simulations demonstrate that the two proposed generalizations lead to significant efficiency gains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. The proposed estimators can handle an unbalanced design where the number of realizations per unit are not equal. For notational convenience and without loss of generality we assume a balanced design.

  2. This approach was used by Racine and Ker (2006) to improve the rating of crop insurance contracts in the U.S. crop insurance program.

  3. The nine densities are: f1: N(0, 1), f2: \(\frac{1}{5}N(0,1)+\frac{1}{5}N(\frac{1}{2},(\frac{2}{3})^2+\frac{3}{5}N(\frac{13}{12},(\frac{5}{9})^2)\), f3: \(\sum _{l=0}^{7} \frac{1}{8}N(3[(\frac{2}{3})^l-1], (\frac{2}{3})^{2l})\), f4: \(\frac{2}{3} N(0,1) + \frac{1}{3} N(0,(\frac{1}{10})^2)\), f5 : \(\frac{1}{10} N(0,1) + \frac{9}{10} N(0,(\frac{1}{10})^2)\), f6 : \(\frac{1}{2} N(-1,(\frac{2}{3})^2) + \frac{1}{2} N(1,(\frac{2}{3})^2)\), f7 : \(\frac{1}{2} N(-\frac{3}{2},(\frac{1}{2})^2) + \frac{1}{2} N(\frac{3}{2},(\frac{1}{2})^2)\), f8 : \(\frac{3}{4} N(0,1) + \frac{1}{4} N(\frac{3}{2},(\frac{1}{3})^2)\), and f9 : \(\frac{9}{20}N(-\frac{6}{5},(\frac{3}{5})^2)+ \frac{9}{20}N(\frac{6}{5},(\frac{3}{5})^2)+ \frac{1}{10}N(0,(\frac{1}{4})^2)\).

  4. The five densities are f1: N(0, 1), f2: \( 0.95 N(0, 1) + 0.05 N(-2, 0.5^2) \), f3: \( 0.90 N(0, 1) + 0.10 N(-2, 0.5^2) \), f4: \( 0.85 N(0, 1) + 0.15 N(-2, 0.5^2)\), and f5: \( 0.80 N(0, 1) + 0.20 N(-2, 0.5^2)\).


  • Hall P, Racine J, Li Q (2004) Cross-validation and the estimation of conditional probability densities. J Am Stat Assoc 99(468):1015–1026

    Article  MathSciNet  Google Scholar 

  • Hjort NL, Glad IK (1995) Nonparametric density estimation with a parametric start. Ann Stat 23(3):882–904

    Article  MathSciNet  Google Scholar 

  • Jones M, Linton O, Nielsen J (1995) A simple bias reduction method for density estimation. Biometrika 82(2):327–338

    Article  MathSciNet  Google Scholar 

  • Ker A, Liu Y (2017) Bayesian model averaging of possibly similar nonparametric densities. Comput Stat 32(1):349–365

    Article  MathSciNet  Google Scholar 

  • Ker AP (2016) Nonparametric estimation of possibly similar densities. Stat Probab Lett 117:23–30

    Article  MathSciNet  Google Scholar 

  • Ker AP, Ergün AT (2005) Empirical bayes nonparametric kernel density estimation. Stat Probab Lett 75(4):315–324

    Article  MathSciNet  Google Scholar 

  • Marron JS, Wand MP (1992) Exact mean integrated squared error. Ann Stat 20(2):712–736

    Article  MathSciNet  Google Scholar 

  • Racine J, Ker AP (2006) Rating crop insurance policies with efficient nonparametric estimators that admit mixed data types. J Agric Resour Econ 31(1):27–39

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alan Ker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: proofs

Appendix: proofs

Throughout the proofs, we let \(X_l^j\) denote the realizations from the unit of interest while \(X_l^{-j}\) denote the realizations from the other or extraneous units.

Theorem 1

The NW, JLN and Ker estimators are special cases of the G1 estimator.

Lemma 1

If \(h_p\rightarrow \infty \), then \(\hat{f}_{G1}(x)=\hat{f}_{NW}(x)\).


If \(h_p\rightarrow \infty \), then

$$\begin{aligned} \hat{g}_{G1}(x) =\frac{1}{n}\sum _{l=1}^{nQ} K^d(l,j)K_{h_p}\left( x-X_l\right) \approx \frac{1}{n}\sum _{l=1}^{nQ} K^d(l,j)K_{h_p}(0), \end{aligned}$$


$$\begin{aligned} \hat{g}_{G1}(X_l^{j}) =\frac{1}{n}\sum _{l=1}^{nQ} K^d(l,j)K_{h_p}\left( x-X_l^{j}\right) \approx \frac{1}{n}\sum _{l=1}^{nQ} K^d(l,j)K_{h_p}(0), \end{aligned}$$

thus, \(\hat{g}_{G1}(x)\) is approximately uniform. Hence,

$$\begin{aligned} \hat{f}_{G1}(x) =\frac{1}{n}\sum _{l=1}^{n} K_{h_{G1}}\left( x-X_l^j \right) = \hat{f}_{NW} \end{aligned}$$

\(\square \)

Lemma 2

If \(\lambda =0\) then \(\hat{f}_{G1}(x)=\hat{f}_{JLN}(x)\).


If \(\lambda =0\), then \( K^d(l,j)=0^{I(l,j)}1^{1-I(l,j)}= 1\) if \(l=j \) and 0 otherwise.


$$\begin{aligned} \hat{g}_{G1}(x)&=\frac{1}{n}\left[ \sum _{l=1}^{n} 1\times K_{h_p}\left( x-X_l^j\right) +\sum _{l=1}^{n(Q-1)} 0\times K_{h_p}\left( x-X_l^{-j}\right) \right] \\&=\frac{1}{n} \sum _{l=1}^{n} K_{h_p}\left( x-X_l^j\right) . \end{aligned}$$

and thus

$$\begin{aligned} \hat{f}_{G1}(x)= \frac{1}{n} \sum _{l=1}^{n} \frac{K_{h_{G1}}(x-X_l^j)}{\hat{f}(X_l^{j})} \hat{f}(x) = \hat{f}_{JLN}(x). \end{aligned}$$

\(\square \)

Lemma 3

If \(\lambda =\frac{Q-1}{Q}\) then \(\hat{f}_{G1}(x)=\hat{f}_K(x)\).


If \(\lambda =\frac{Q-1}{Q}\), then \(\frac{\lambda }{Q-1}=1-\lambda =\frac{1}{Q}\), \(K^d(l,j)=\frac{1}{Q}^{I(l,j)} \frac{1}{Q}^{1-I(l,j)}= \frac{1}{Q} \; \forall \; l,j \) thus

$$\begin{aligned} \hat{g}_{G1}(x)&=\frac{1}{n}\left[ \sum _{l=1}^{n} \frac{1}{Q}\times K_{h_p}\left( x-X_l^{j}\right) +\sum _{l=1}^{n(Q-1)} \frac{1}{Q}\times K_{h_p}\left( x-X_l^{-j}\right) \right] \\&=\frac{1}{nQ} \sum _{l=1}^{nQ} K_{h_p}\left( x-X_l\right) = \hat{g}(x) . \end{aligned}$$

and thus

$$\begin{aligned} \hat{f}_{G1}(x)= \frac{1}{n} \sum _{l=1}^{n} \frac{K_{h_{G1}}(x-X_l^j)}{\hat{g}(X_l^{j})} \hat{g}(x) = \hat{f}_K(x). \end{aligned}$$

\(\square \)

Theorem 2

The NW, HRL and Ker estimators are special cases of the G2 estimator.

Lemma 4

If \(h_p \rightarrow \infty \), \(\lambda =0\) then \(\hat{f}_{G2}(x)=\hat{f}_{NW}(x)\).


If \(h_g \rightarrow \infty \), then

$$\begin{aligned} \hat{g}_{G2}(x) =\frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}\left( x-X_l\right) \approx \frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}(0), \end{aligned}$$


$$\begin{aligned} \hat{g}_{G2}(X_i^j) =\frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}\left( X_l-X_i^j\right) \approx \frac{1}{nQ}\sum _{p=1}^{nQ} K_{h_p}(0), \end{aligned}$$

thus \(\hat{g}_{G2}(x)\) and is approximately uniform. Then

$$\begin{aligned} \hat{f}_{G2}(j,x)=\frac{1}{nQ}\sum _{l=1}^{nQ}K^d(l,j)K_{h_{G2}}(x-X_l) \end{aligned}$$


$$\begin{aligned} \hat{f}_{G2}(x)=\frac{\hat{f}_{G2}(j,x)}{\hat{m}(j)} =\frac{1}{n}\sum _{l=1}^{nQ}K^d(l,j)K_{h_{G2}}(x-X_l). \end{aligned}$$

If \(\lambda =0\), then \(K^d(l,j)=0^{I(l,j)} 1^{1-I(l,j)} = 1 \) if \(l=j\) and 0 otherwise.

$$\begin{aligned} \hat{f}_{G2}(x)&=\frac{1}{n} \left[ \sum _{l=1}^{n} 1\times K_{h_{G2}}\left( x-X_l^j\right) +\sum _{l=1}^{n(Q-1)} 0\times K_{h_{G2}}\left( x-X_l^{-j}\right) \right] \\&=\frac{1}{n} \sum _{l=1}^{n} K_{h_{G2}}\left( x-X_l^j\right) = \hat{f}_{NW}(x). \end{aligned}$$

\(\square \)

Lemma 5

If \(h_p \rightarrow \infty \) then \(\hat{f}_{G2}(x)=\hat{f}_{HRL}(x)\).


If \(h_p \rightarrow \infty \), then

$$\begin{aligned} \hat{g}_{G2}(x) =\frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}(x-X_l) \approx \frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}(0), \end{aligned}$$


$$\begin{aligned} \hat{g}_{G2}(X_i^j) =\frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}(X_l-X_i^j) \approx \frac{1}{nQ}\sum _{l=1}^{nQ} K_{h_p}(0), \end{aligned}$$

thus \(\hat{g}_{G2}(x)\) is approximately uniform then

$$\begin{aligned} \hat{f}_{G2}(j,x)&=\frac{1}{nQ}\sum _{l=1}^{nQ}K^d(l,j)L(x,X_l)\\&=\frac{1}{nQ}\sum _{l=1}^{nQ}K^d(l,j)K_{h_{G2}} (x-X_l) \end{aligned}$$


$$\begin{aligned} \hat{f}_{G2}(x)=\frac{\hat{f}_{G2}(j,x)}{\hat{m}(j)} =\frac{1}{n}\sum _{l=1}^{nQ}K^d(l,j)K_{h_{G2}}(x-X_l) = \hat{f}_{HRL}(x). \end{aligned}$$

\(\square \)

Lemma 6

If \(\lambda =0\) then \(\hat{f}_{G2}(x)=\hat{f}_{K}(x)\).


If \(\lambda =0\), then \(K^d(l,j)=0^{I(l,j)} 1^{1-I(l,j)} = 1\) if \(l = j\) and 0 otherwise.

$$\begin{aligned} \hat{f}_{G2}(j,x)&= \frac{1}{nQ}\left[ \sum _{l=1}^{n} 1\times \frac{ K_{h_{G2}}(x-X_l^{j})}{\hat{g}_{G2}(X_l^{j})} \hat{g}_{G2}(x) +\sum _{l=1}^{n(Q-1)} 0\times \frac{ K_{h_{G2}}(x-X_l^{-j})}{\hat{g}_{G2}(X_l^{-j})} \hat{g}_{G2}(x) \right] \\&= \frac{1}{nQ} \sum _{l=1}^{n} \frac{ K_{h_{G2}}(x-X_l^{j})}{\hat{g}_{G2}(X_l^{j})} \hat{g}_{G2}(x), \end{aligned}$$

and then

$$\begin{aligned} \hat{f}_{G2}(x) = \frac{1}{n} \sum _{l=1}^{n} \frac{ K_{h_{G2}}(x-X_l^j)}{\hat{g}_{G2}(X_l^{j})} \hat{g}_{G2}(x) = \hat{f}_K(x). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Z., Ker, A. Two generalized nonparametric methods for estimating like densities. Comput Stat 36, 113–126 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: