Skip to main content
Log in

Interpolation of daily rainfall data using censored Bayesian spatially varying model

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper illustrates a Bayesian spatially varying space-time model to analyse daily precipitation in the Murray Darling Basin (MDB) of Australia. The model is capable of addressing data censoring at zero rainfall days using a latent Gaussian spatial field. The model is also useful for analysing data obtained from sparse locations, where spatially varying parameters are used to interpolate the rainfall estimates in high-density grids across the MDB region. We find that the proposed censored method provides a better out-of-sample predictive performance for the daily rainfall measurements compared to a non-truncated method. Additionally, it identifies location specific trends over the study region. The model is constructed under the Bayesian paradigm and the Markov chain Monte Carlo algorithm is used to obtain inferences of the model parameters. The R software spTDyn is hence extended to version 2.0 to implement the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.bom.gov.au/climate/change/datasets/datasets.shtml.

  2. https://cran.r-project.org/web/packages/spTDyn/index.html.

  3. http://www.abs.gov.au/ausstats/abs@.nsf/0/94F2007584736094CA2574A50014B1B6?opendocument.

  4. http://www.agriculture.gov.au/abares/research-topics/productivity/agricultural-productivity-estimates.

References

  • Allard D, Bourotte M (2015) Disaggregating daily precipitations into hourly values with a transformed censored latent gaussian process. Stoch Environ Res Risk Assess 29(2):453–462

    Google Scholar 

  • Bakar KS (2017) Bayesian Gaussian models for interpolating large-dimensional data at misaligned areal units. In: The 22nd international congress on modelling and simulation (MODSIM2017), Hobart, Australia, pp 85–91

  • Bakar KS, Kokic P (2017) Bayesian Gaussian models for point referenced spatial and spatio-temporal data. J Stat Res 51(1):17–40

    MathSciNet  Google Scholar 

  • Bakar KS, Sahu SK (2015) spTimer: spatio-temporal Bayesian modelling using R. J Stat Softw 63(15):1–32

    Google Scholar 

  • Bakar KS, Kokic P, Jin H (2015) A spatiodynamic model for assessing frost risk in south-eastern Australia. J R Stat Soc Ser C 64(5):755–778

    MathSciNet  Google Scholar 

  • Bakar KS, Kokic P, Jin H (2016) Hierarchical spatially varying coefficient and temporal dynamic process models using spTDyn. J Stat Comput Simul 86(4):820–840

    MathSciNet  Google Scholar 

  • Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc B 70:825–848

    MathSciNet  MATH  Google Scholar 

  • Baxevani A, Lennartsson J (2015) A spatiotemporal precipitation generator based on a censored latent gaussian field. Water Resour Res 51(6):4338–4358

    Google Scholar 

  • Bell TL (1987) A space-time stochastic model of rainfall for satellite remote-sensing studies. J Geophys Res Atmosph 92(D8):9631–9643

    Google Scholar 

  • Cameletti M, Ignaccolo R, Bande S (2011) Comparing spatio-temporal models for particulate matter in piemonte. Environmetrics 22(8):985–996

    MathSciNet  Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840

    MathSciNet  MATH  Google Scholar 

  • Cressie NAC, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc B 70:209–226

    MathSciNet  MATH  Google Scholar 

  • Cressie N, Shi T, Kang EL (2010) Fixed rank filtering for spatio-temporal data. J Comput Graph Stat 19(3):724–745

    MathSciNet  Google Scholar 

  • Crimp S, Bakar KS, Kokic P, Jin H, Nicholls N, Howden M (2015) Bayesian space-time model to analyse frost risk for agriculture in southeast australia. Int J Climatol 35(8):2092–2108

    Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33(2):140–158

    Google Scholar 

  • Deidda R (2010) A multiple threshold method for fitting the generalized pareto distribution to rainfall time series. Hydrol Earth Syst Sci 14(12):2559–2575

    Google Scholar 

  • Del Sarto S, Ranalli MG, Bakar KS, Cappelletti D, Moroni B, Crocchianti S, Castellini S, Spataro F, Esposito G, Ianniello A, et al (2016) Bayesian spatiotemporal modeling of urban air pollution dynamics. In: Topics on methodological and applied statistical inference, pp 95–103. Springer

  • Deo RC, Åžahin M (2015) Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern australia. Atmosph Res 161:65–81

    Google Scholar 

  • Di Piazza A, Conti FL, Noto LV, Viola F, La Loggia G (2011) Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for sicily, italy. Int J Appl Earth Obs Geoinf 13(3):396–408

    Google Scholar 

  • Dirks K, Hay J, Stow C, Harris D (1998) High-resolution studies of rainfall on norfolk island: part ii: interpolation of rainfall data. J Hydrol 208(3–4):187–193

    Google Scholar 

  • Dunn PK (2004) Occurrence and quantity of precipitation can be modelled simultaneously. Int J Climatol 24(10):1231–1239

    Google Scholar 

  • Durbán M, Glasbey C (2001) Weather modelling using a multivariate latent gaussian model. Agric For Meteorol 109(3):187–201

    Google Scholar 

  • Dyrrdal AV, Lenkoski A, Thorarinsdottir TL, Stordal F (2015) Bayesian hierarchical modeling of extreme hourly precipitation in norway. Environmetrics 26(2):89–106

    MathSciNet  Google Scholar 

  • Finley AO, Banerjee S, Carlin BP (2007) spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. J Stat Softw 19(4):1

    Google Scholar 

  • Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss approach. Biometrika 85:1–11

    MathSciNet  MATH  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228(1–2):113–129

    Google Scholar 

  • Guillot G, Lebel T (1999) Approximation of sahelian rainfall fields with meta-gaussian random functions. Stoch Environ Res Risk Assess 13(1–2):113–130

    MATH  Google Scholar 

  • Harvey AC (1989) Forecasting, structural time series models, and the Kalman filter. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes JP, Guttorp P, Charles SP (1999) A non-homogeneous hidden markov model for precipitation occurrence. J R Stat Soc Ser C (Appl Stat) 48(1):15–30

    MATH  Google Scholar 

  • Hutchinson M (1995) Stochastic space-time weather models from ground-based data. Agric For Meteorol 73(3–4):237–264

    Google Scholar 

  • Katzfuss M, Cressie N (2012) Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94–107

    MathSciNet  Google Scholar 

  • Kaufman CG, Schervish MJ, Nychka DW (2008) Covariance tapering for likelihood-based estimation in large spatial data sets. J Am Stat Assoc 103(484):1545–1555

    MathSciNet  MATH  Google Scholar 

  • Keating BA, Gaydon D, Huth N, Probert ME, Verburg K, Smith C, Bond W (2002) Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling basin, Australia. Eur J Agron 18(1–2):159–169

    Google Scholar 

  • Kleiber W, Katz RW, Rajagopalan B (2012) Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour Res 48(1):1–17

    Google Scholar 

  • Lasinio GJ, Sahu S, Mardia K (2007) Modeling rainfall data using a Bayesian kriged-kalman model. In: Upadhya SK, Singh U, Dey DK (eds) Bayesian statistics and its applocations. Anshan Ltd., London, pp 61–86

    Google Scholar 

  • Lee D, Mukhopadhyay S, Rushworth A, Sahu SK (2016) A rigorous statistical framework for estimating the long-term health impact of air pollution. Atmos Environ 40(28):5464–5475

    Google Scholar 

  • Liu S (1997) A new model for the prediction of rainfall interception in forest canopies. Ecol Modell 99(2–3):151–159

    Google Scholar 

  • Nychka D, Bandyopadhyay S, Hammerling D, Lindgren F, Sain S (2015) A multiresolution gaussian process model for the analysis of large spatial datasets. J Comput Graph Stat 24(2):579–599

    MathSciNet  Google Scholar 

  • Pirani M, Panton A, Purdie DA, Sahu SK (2016) Modelling macronutrient dynamics in the hampshire avon river: A bayesian approach to estimate seasonal variability and total flux. Sci Total Environ 572:1449–1460

    Google Scholar 

  • Potter N, Chiew F, Frost A (2010) An assessment of the severity of recent reductions in rainfall and runoff in the murray-darling basin. J Hydrol 381(1–2):52–64

    Google Scholar 

  • Qureshi M, Ahmad M, Whitten S, Reeson A, Kirby M (2018) Impact of climate variability including drought on the residual value of irrigation water across the murray-darling basin, australia. Water Econ Policy 4(01):1550020

    Google Scholar 

  • Sahu SK, Bakar KS (2012a) A comparison of Bayesian models for daily ozone concentration levels. Stat Methodol 9(1):144–157

    MathSciNet  MATH  Google Scholar 

  • Sahu SK, Bakar KS (2012b) Hierarchical Bayesian autoregressive models for large space time data with applications to ozone concentration modelling. Appl Stoch Models Bus Ind 28:395–415

    MathSciNet  Google Scholar 

  • Sahu SK, Bakar KS, Awang N (2015) Bayesian forecasting using spatiotemporal models with applications to ozone concentration levels in the eastern United States. Geom Driven Stat 121:260–281

    MathSciNet  Google Scholar 

  • Sahu SK, Mardia KV (2005) A Bayesian kriged kalman model for short-term forecasting of air pollution levels. J R Stat Soc Ser C (Appl Stat) 54(1):223–244

    MathSciNet  MATH  Google Scholar 

  • Schultz DM, Mikkonen S, Laaksonen A, Richman MB (2007) Weekly precipitation cycles? lack of evidence from united states surface stations. Geophys Res Lett 34(22):1–4

    Google Scholar 

  • Sigrist F, Künsch HR, Stahel WA (2012) A dynamic nonstationary spatio-temporal model for short term prediction of precipitation. Ann Appl Stat 6(4):1452–1477

    MathSciNet  MATH  Google Scholar 

  • Sloughter JML, Raftery AE, Gneiting T, Fraley C (2007) Probabilistic quantitative precipitation forecasting using bayesian model averaging. Mon Weather Rev 135(9):3209–3220

    Google Scholar 

  • Stauffer R, Mayr GJ, Messner JW, Umlauf N, Zeileis A (2017) Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model. Int J Climatol 37(7):3264–3275

    Google Scholar 

  • Stroud JR, Muller P, Sanso B (2001) Dynamic models for spatiotemporal data. J R Stat Soc B 63(4):673–689

    MathSciNet  MATH  Google Scholar 

  • Wilks D (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210(1–4):178–191

    Google Scholar 

  • Wilks DS (1999) Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric For Meteorol 93(3):153–169

    Google Scholar 

  • Xingjian S, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-c (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, pp 802–810

  • Zquiza EP-I (1998) Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. Int J Climatol 18:1031–1047

    Google Scholar 

  • Zucchini W, Guttorp P (1991) A hidden Markov model for space-time precipitation. Water Resour Res 27(8):1917–1923

    Google Scholar 

Download references

Acknowledgements

The author thanks Professor Sujit Sahu for his comments to an early draft of this paper. The author also acknowledges the support from Seasonal Climate Forecast and Downscaling Project of Digiscape and Data61, CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shuvo Bakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1830 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakar, K.S. Interpolation of daily rainfall data using censored Bayesian spatially varying model. Comput Stat 35, 135–152 (2020). https://doi.org/10.1007/s00180-019-00911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00911-0

Keywords

Navigation