Skip to main content
Log in

On a heavy-tailed parametric quantile regression model for limited range response variables

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

On the basis of a two-parameter heavy-tailed distribution, we introduce a novel parametric quantile regression model for limited range response variables, which can be very useful in modeling bounded response variables at different levels (quantiles) in the presence of atypical observations. We consider a frequentist approach to perform inferences, and the maximum likelihood method is employed to estimate the model parameters. We also propose a residual analysis to assess departures from model assumptions. Additionally, the local influence method is discussed, and the normal curvature for studying local influence on the maximum likelihood estimates is derived under a specific perturbation scheme. An application to real data is presented to show the usefulness of the new parametric quantile regression model in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. An outlying observation, or “outlier”, is one that appears to deviate markedly from other members of the sample in which it occurs.

  2. The voting data were obtained from http://www.onpe.gob.pe, whereas the HDI data were obtained from http://www.pnud.org.pe.

References

  • Atkinson AC (1985) Plots, transformation and regression: an introduction to graphical methods of diagnostic regression analysis. Oxford University Press, New York

    MATH  Google Scholar 

  • Bayes C, Bazán JL, García C (2012) A new robust regression model for proportions. Bayesian Anal 7:771–796

    MathSciNet  MATH  Google Scholar 

  • Bierens H (1994) Topics in advanced econometrics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bondell HD, Reich BJ, Wang HX (2010) Noncrossing quantile regression curve estimation. Biometrika 97:825–838

    MathSciNet  MATH  Google Scholar 

  • Cepeda-Cuervo E, Núñez-Antón V (2013) Spatial double generalized beta regression models. Extensions and application to study quality of education in Colombia. J Educ Behav Stat 38:604–628

    Google Scholar 

  • Chernozhukov V, Fernandez-Val I, Galichon A (2010) Quantile and probability curves without crossing. Econometrica 78:1093–1125

    MathSciNet  MATH  Google Scholar 

  • Cook RD (1986) Assessment of local influence. J R Stat Soc B 48:133–169

    MathSciNet  MATH  Google Scholar 

  • Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24

    Google Scholar 

  • Cugerone K, De Michele C (2015) Johnson \(S_B\) as general functional form for raindrop size distribution. Water Resour Res 51:6276–6289

    Google Scholar 

  • Doornik JA (2009) An object-oriented matrix language—Ox 6. Timberlake Consultants Press, London

    Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomised quantile residuals. J Comput Graph Stat 5:236–244

    Google Scholar 

  • Fang KT, Anderson TW (1990) Statistical inference in elliptical contoured and related distributions. Allerton Press, New York

    MATH  Google Scholar 

  • Feng C, Sadeghpour A, Li L (2017) Randomized quantile residuals: an omnibus model diagnostic tool with unified reference distribution. arXiv preprint arXiv:1708.08527

  • Ferrari SLP, Cribari-Neto F (2004) Beta regression for modeling rates and proportions. J Appl Stat 31:799–815

    MathSciNet  MATH  Google Scholar 

  • Flynn MR (2006) Fitting human exposure data with the Johnson \(S_B\) distribution. J Expo Sci Environ Epidemiol 16:56–62

    Google Scholar 

  • Galvis DM, Bandyopadhyay D, Lachos VH (2014) Augmented mixed beta regression models for periodontal proportion data. Stat Med 33:3759–3771

    MathSciNet  Google Scholar 

  • Gilchrist WG (2000) Stat Model Quantile Funct. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Hill ID, Hill R, Holder RL (1976) Algorithm AS 99: fitting Johnson curves by moments. J R Stat Soc C 25:180–189

    Google Scholar 

  • Johnson NL (1949) Systems of frequency curves generated by the methods of translation. Biometrika 36:149–176

    MathSciNet  MATH  Google Scholar 

  • Koenker R (2005) Quantile regression, Econometric society monograph series. Cambridge University Press, Cambridge

    Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    MathSciNet  MATH  Google Scholar 

  • Koenker R, Hallock KF (2001) Quantile regression: an introduction. J Econ Perspect 15:143–156

    Google Scholar 

  • Kotz S, van Dorp JR (2004) Beyond beta: other continuous families of distributions with bounded support and applications. World Scientific Press, Singapore

    MATH  Google Scholar 

  • Krätschmer V (2007) The uniqueness of extremum estimation. Stat Probab Lett 77:942–951

    MathSciNet  MATH  Google Scholar 

  • Kumaraswamy P (1980) A generalized probability density function for double-bounded random processes. J Hydrol 46:79–88

    Google Scholar 

  • Lange KL, Little RJA, Taylor JMG (1989) Robust statistical modelling using t-distribution. J Am Stat Assoc 84:881–896

    Google Scholar 

  • Lemonte AJ, Bazán J (2016) New class of Johnson \(S_B\) distributions and its associated regression model for rates and proportions. Biom J 58:727–746

    MathSciNet  MATH  Google Scholar 

  • Lucas A (1997) Robustness of the student t based M-estimator. Commun Stat Theory Methods 26:1165–1182

    MathSciNet  MATH  Google Scholar 

  • Mage DT (1980) An explicit solution for SB parameters using four percentile points. Technometrics 22:247–251

    MATH  Google Scholar 

  • McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn. Chapman & Hall, London

    MATH  Google Scholar 

  • Mitnik PA, Baek S (2013) The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation. Stat Papers 54:177–192

    MathSciNet  MATH  Google Scholar 

  • Niermann S (2006) Evolutionary estimation of parameters of Johnson distributions. J Stat Comput Simul 76:185–193

    MathSciNet  MATH  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Read CB (2004) A conversation with Norman L. Johnson. Stat Sci 19:544–560

    MathSciNet  MATH  Google Scholar 

  • Reich BJ, Bondell HD, Wang HJ (2010) Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11:337–352

    Google Scholar 

  • Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880

    MathSciNet  MATH  Google Scholar 

  • Simas AB, Barreto-Souza W, Rocha AV (2010) Improved estimators for a general class of beta regression models. Comput Stat Data Anal 54:348–366

    MathSciNet  MATH  Google Scholar 

  • Slifker JF, Shapiro SS (1980) The Johnson system: selection and parameter estimation. Technometrics 22:239–246

    MATH  Google Scholar 

  • Smithson M, Shou Y (2017) CDF-quantile distributions for modelling random variables on the unit interval. Br J Math Stat Psychol 70:412–438

    MATH  Google Scholar 

  • Tadikamalla PR, Johnson NL (1982) Systems of frequency curves generated by transformations of logistic variables. Biometrika 69:461–465

    MathSciNet  Google Scholar 

  • Tsionas EG (2001) Likelihood and posterior shapes in Johnson’s \(S_B\) system. Sankhya B 63:3–9

    MathSciNet  MATH  Google Scholar 

  • Taylor JMG, Siqueira AL, Weiss RE (1996) The cost of adding parameters to a model. J R Stat Soc B 58:593–607

    MathSciNet  MATH  Google Scholar 

  • Yang Y, Wang HJ, He X (2016) Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood. Int Stat Rev 84:327–344

    MathSciNet  Google Scholar 

  • Wang H, Zhou J, Li Y (2013) Variable selection for censored quantile regression. Stat Sin 23:145–167

    MATH  Google Scholar 

  • Wheeler RE (1980) Quantile estimators of Johnson curve parameters. Biometrika 67:725–728

    MathSciNet  Google Scholar 

  • Zhang P, Qiu Z, Fu Y, Song PXK (2009) Robust transformation mixed-effects models for longitudinal continuous proportional data. Can J Stat 37:266–281

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the Associate Editor and the anonymous reviewers for their insightful comments and suggestions that greatly improved this paper. Artur Lemonte was supported by Grant 301808/2016–3 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil). Germán Moreno-Arenas gratefully acknowledges the Mobility Program of the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Lemonte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemonte, A.J., Moreno-Arenas, G. On a heavy-tailed parametric quantile regression model for limited range response variables. Comput Stat 35, 379–398 (2020). https://doi.org/10.1007/s00180-019-00898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00898-8

Keywords

Navigation