Computational Statistics

, Volume 34, Issue 2, pp 489–502 | Cite as

Dynamic semi-parametric factor model for functional expectiles

  • Petra BurdejováEmail author
  • Wolfgang K. Härdle
Original paper


High-frequency data can provide us with a quantity of information for forecasting and help to calculate and prevent the future risk based on extremes. This tail behaviour is very often driven by exogenous components and may be modelled conditionally on other variables. However, many of these phenomena are observed over time, exhibiting non-trivial dynamics and dependencies. We propose a functional dynamic factor model to study the dynamics of expectile curves. The complexity of the model and the number of dependent variables are reduced by lasso penalization. The functional factors serve as a low-dimensional representation of the conditional tail event, while the time-variation is captured by factor loadings. We illustrate the model with an application to climatology, where daily data over years on temperature, rainfalls or strength of wind are available.


Factor model Functional data Expectiles Extremes 



  1. Benko M, Härdle W, Kneip A (2009) Common functional principal components. Ann Stat 37(1):1–34, 02. MathSciNetCrossRefzbMATHGoogle Scholar
  2. Borke L, Härdle WK (2017a) Q3-D3-LSA. In: Härdle WK, Lu HH, Shen X (eds) Handbook of big data analytics. Springer, New York. Google Scholar
  3. Borke L, Härdle WK (2017b) GitHub API based QuantNet mining infrastructure in R. Discussion Paper SFB2017-08, Humboldt-Universität zu Berlin.
  4. Breckling J, Chambers R (1988) M-quantiles. Biometrika 75:761–771. MathSciNetCrossRefzbMATHGoogle Scholar
  5. Burdejova P, Härdle W, Kokoszka P, Xiong Q (2017) Change point and trend analyses of annual expectile curves of tropical storms. Econom Stat 1:101–117. MathSciNetCrossRefGoogle Scholar
  6. Choros-Tomczyk B, Härdle WK, Okhrin O (2016) A semiparametric factor model for CDO surfaces dynamics. J Multivar Anal 146:151–163. MathSciNetCrossRefzbMATHGoogle Scholar
  7. Erbas B, Hyndman RJ, Gertig DM (2007) Forecasting age-specific breast cancer mortality using functional data models. Stat Med 26(2):458–470. MathSciNetCrossRefGoogle Scholar
  8. Ferraty F, Vieu P (2006) Nonparametric funcional data analysis; theory and practice. Springer, New YorkzbMATHGoogle Scholar
  9. Guo M, Zhou L, Huang JZ, Härdle WK (2015) Functional data analysis of generalized regression quantiles. Stat Comput 25(2):189–202. MathSciNetCrossRefzbMATHGoogle Scholar
  10. Härdle WK, Majer P (2016) Yield curve modeling and forecasting using semiparametric factor dynamics. Eur J Finance 22(12):1109–1129. CrossRefGoogle Scholar
  11. Hörmann S, Kokoszka P (2010) Weakly dependent functional data. Ann Stat 38(3):1845–1884. MathSciNetCrossRefzbMATHGoogle Scholar
  12. Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New YorkCrossRefzbMATHGoogle Scholar
  13. Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat 38(4):1978–2004. MathSciNetCrossRefzbMATHGoogle Scholar
  14. Ignaccolo R, Ghigo S, Giovenali E (2008) Analysis of air quality monitoring networks by functional clustering. Environmetrics 19(7):672–686. MathSciNetCrossRefGoogle Scholar
  15. Jones MC (1994) Expectiles and M-quantiles are quantiles. Stat Probab Lett 20:149–153. MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kneib T (2013) Beyond mean regression. Stat Model 13(4):275–303. MathSciNetCrossRefGoogle Scholar
  17. Kokoszka P, Miao H, Zhang X (2014) Functional dynamic factor model for intraday price curves. J Financ Econom 13:1–22. Google Scholar
  18. Lee RD, Carter LR (1992) Modeling and forecasting US mortality. J Am Stat Assoc 87(419):659–671. zbMATHGoogle Scholar
  19. Liao L, Park C, Choi H (2018) Penalized expectile regression: an alternative to penalized quantile regression. Ann Inst Stat Math. Google Scholar
  20. López-Cabrera B, Schulz F (2017) Forecasting generalized quantiles of electricity demand: a functional data approach. J Am Stat Assoc 112(517):127–136. MathSciNetCrossRefGoogle Scholar
  21. Nelson CR, Siegel AF (1987) Parsimonious modeling of yield curves. J Bus 60(4):473–489. CrossRefGoogle Scholar
  22. Newey W, Powell J (1987) Asymmetric least squares estimation and testing. Econometrica.
  23. Park BU, Mammen E, Härdle W, Borak S (2009) Time series modelling with semiparametric factor dynamics. J Am Stat Assoc 104(485):284–298. MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ramsay J, Silverman B (2005) Functional data analysis. Springer, New YorkzbMATHGoogle Scholar
  25. Schnabel SK, Eilers PH (2009) Optimal expectile smoothing. Comput Stat Data Anal 53(12):4168–4177. MathSciNetCrossRefzbMATHGoogle Scholar
  26. Song S, Härdle WK, Ritov Y (2014) Generalized dynamic semi-parametric factor models for high-dimensional non-stationary time series. Econom J 17(2):S101–S131. CrossRefGoogle Scholar
  27. Tran NM, Burdejova P, Osipenko M, Härdle WK (2018) Principal component analysis in an asymmetric norm. J Multivar Anal. Google Scholar
  28. UNISYS (2015) Data in atlantic and west pacific, 2015. Unisys Weather Information Systems. Accessed 20 Feb 2015
  29. Yang Y, Zou H (2015) A fast unified algorithm for solving group-lasso penalize learning problems. Stat Comput 25(6):1129–1141. MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Sim Kee Boon Institute for Financial EconomicsSingapore Management UniversitySingaporeSingapore

Personalised recommendations